168 research outputs found
A complex hepatitis B virus (X/C) recombinant is common in Long An county, Guangxi and may have originated in southern China
Recently, a complex (X/C) hepatitis B virus (HBV) recombinant, first reported in 2000, was proposed as a new genotype; although this was refuted immediately because the strains differ by less than 8 % in nucleotide distance from genotype C. Over 13.5 % (38/281) of HBV isolates from the Long An cohort in China were not assigned to a specific genotype, using current genotyping tools to analyse surface ORF sequences, and these have about 98 % similarity to the X/C recombinants. To determine whether this close identity extends to the full-length sequences and to investigate the evolutionary history of the Long An X/C recombinants, 17 complete genome sequences were determined. They are highly similar (96–99 %) to the Vietnamese strains and, although some reach or exceed 8 % nucleotide sequence difference from all known genotypes, they cluster together in the same clade, separating in a phylogenetic tree from the genotype C branch. Analysis of recombination reveals that all but one of the Long An isolates resembles the Vietnamese isolates in that they result from apparent recombination between genotype C and a parent of unknown genotype (X), which shows similarity in part to genotype G. The exception, isolate QL523, has a greater proportion of genotype C parent. Phylogeographic analysis reveals that these recombinants probably arose in southern China and spread later to Vietnam and Laos
The type 2C phosphatase Wip1: An oncogenic regulator of tumor suppressor and DNA damage response pathways
The Wild-type p53-induced phosphatase 1, Wip1 (or PPM1D), is unusual in that it is a serine/threonine phosphatase with oncogenic activity. A member of the type 2C phosphatases (PP2Cδ), Wip1 has been shown to be amplified and overexpressed in multiple human cancer types, including breast and ovarian carcinomas. In rodent primary fibroblast transformation assays, Wip1 cooperates with known oncogenes to induce transformed foci. The recent identification of target proteins that are dephosphorylated by Wip1 has provided mechanistic insights into its oncogenic functions. Wip1 acts as a homeostatic regulator of the DNA damage response by dephosphorylating proteins that are substrates of both ATM and ATR, important DNA damage sensor kinases. Wip1 also suppresses the activity of multiple tumor suppressors, including p53, ATM, p16INK4a and ARF. We present evidence that the suppression of p53, p38 MAP kinase, and ATM/ATR signaling pathways by Wip1 are important components of its oncogenicity when it is amplified and overexpressed in human cancers
Analysis of LhcSR3, a Protein Essential for Feedback De-Excitation in the Green Alga Chlamydomonas reinhardtii
To prevent photodamage by excess light, plants use different proteins to sense pH changes and to dissipate excited energy states. In green microalgae, however, the LhcSR3 gene product is able to perform both pH sensing and energy quenching functions
Perceptions of the appropriate response to norm violation in 57 societies
Norm enforcement may be important for resolving conflicts and promoting cooperation. However, little is known about how preferred responses to norm violations vary across cultures and across domains. In a preregistered study of 57 countries (using convenience samples of 22,863 students and non-students), we measured perceptions of the appropriateness of various responses to a violation of a cooperative norm and to atypical social behaviors. Our findings highlight both cultural universals and cultural variation. We find a universal negative relation between appropriateness ratings of norm violations and appropriateness ratings of responses in the form of confrontation, social ostracism and gossip. Moreover, we find the country variation in the appropriateness of sanctions to be consistent across different norm violations but not across different sanctions. Specifically, in those countries where use of physical confrontation and social ostracism is rated as less appropriate, gossip is rated as more appropriate.info:eu-repo/semantics/publishedVersio
Differentiation of breast cancer stem cells by knockdown of CD44: promising differentiation therapy
<p>Abstract</p> <p>Background</p> <p>Breast cancer stem cells (BCSCs) are the source of breast tumors. Compared with other cancer cells, cancer stem cells show high resistance to both chemotherapy and radiotherapy. Targeting of BCSCs is thus a potentially promising and effective strategy for breast cancer treatment. Differentiation therapy represents one type of cancer stem-cell-targeting therapy, aimed at attacking the stemness of cancer stem cells, thus reducing their chemo- and radioresistance. In a previous study, we showed that down-regulation of CD44 sensitized BCSCs to the anti-tumor agent doxorubicin. This study aimed to determine if CD44 knockdown caused BCSCs to differentiate into breast cancer non-stem cells (non-BCSCs).</p> <p>Methods</p> <p>We isolated a breast cancer cell population (CD44<sup>+</sup>CD24<sup>- </sup>cells) from primary cultures of malignant breast tumors. These cells were sorted into four sub-populations based on their expression of CD44 and CD24 surface markers. CD44 knockdown in the BCSC population was achieved using small hairpin RNA lentivirus particles. The differentiated status of CD44 knock-down BCSCs was evaluated on the basis of changes in CD44<sup>+</sup>CD24<sup>- </sup>phenotype, tumorigenesis in NOD/SCID mice, and gene expression in relation to renewal status, metastasis, and cell cycle in comparison with BCSCs and non-BCSCs.</p> <p>Results</p> <p>Knockdown of CD44 caused BCSCs to differentiate into non-BCSCs with lower tumorigenic potential, and altered the cell cycle and expression profiles of some stem cell-related genes, making them more similar to those seen in non-BCSCs.</p> <p>Conclusions</p> <p>Knockdown of CD44 is an effective strategy for attacking the stemness of BCSCs, resulting in a loss of stemness and an increase in susceptibility to chemotherapy or radiation. The results of this study highlight a potential new strategy for breast cancer treatment through the targeting of BCSCs.</p
New endoperoxides highly active in vivo and in vitro against artemisinin-resistant Plasmodium falciparum
Background:
The emergence and spread of Plasmodium falciparum resistance to artemisinin-based combination therapy in Southeast Asia prompted the need to develop new endoperoxide-type drugs.
Methods:
A chemically diverse library of endoperoxides was designed and synthesized. The compounds were screened for in vitro and in vivo anti-malarial activity using, respectively, the SYBR Green I assay and a mouse model. Ring survival and mature stage survival assays were performed against artemisinin-resistant and artemisinin-sensitive P. falciparum strains. Cytotoxicity was evaluated against mammalian cell lines V79 and HepG2, using the MTT assay.
Results:
The synthesis and anti-malarial activity of 21 new endoperoxide-derived compounds is reported, where the peroxide pharmacophore is part of a trioxolane (ozonide) or a tetraoxane moiety, flanked by adamantane and a substituted cyclohexyl ring. Eight compounds exhibited sub-micromolar anti-malarial activity (IC50 0.3–71.1 nM), no cross-resistance with artemisinin or quinolone derivatives and negligible cytotoxicity towards mammalian cells. From these, six produced ring stage survival < 1% against the resistant strain IPC5202 and three of them totally suppressed Plasmodium berghei parasitaemia in mice after oral administration.
Conclusion:
The investigated, trioxolane–tetrazole conjugates LC131 and LC136 emerged as potential anti-malarial candidates; they show negligible toxicity towards mammalian cells, ability to kill intra-erythrocytic asexual stages of artemisinin-resistant P. falciparum and capacity to totally suppress P. berghei parasitaemia in mice.info:eu-repo/semantics/publishedVersio
- …