580 research outputs found

    The First Simultaneous 3.5 and 1.3mm Polarimetric Survey of Active Galactic Nuclei in the Northern Sky

    Full text link
    Short millimeter observations of radio-loud AGN offer the opportunity to study the physics of their inner relativistic jets, from where the bulk millimeter emission is radiated. Millimeter jets are significantly less affected by Faraday rotation and depolarization than in radio. Also, the millimeter emission is dominated by the innermost jet regions, that are invisible in radio owing to synchrotron opacity. We present the first dual frequency simultaneous 86GHz and 229GHz polarimetric survey of all four Stokes parameters of a large sample of 211 radio loud active galactic nuclei, designed to be flux limited at 1Jy at 86GHz. The observations were most of them made in mid August 2010 using the XPOL polarimeter on the IRAM 30 m millimeter radio telescope. Linear polarization detections above 3 sigma median level of ~1.0% are reported for 183 sources at 86GHz, and for 23 sources at 229GHz, where the median 3 sigma level is ~6.0%. We show a clear excess of the linear polarization degree detected at 229GHz with regard to that at 86GHz by a factor of ~1.6, thus implying a progressively better ordered magnetic field for blazar jet regions located progressively upstream in the jet. We show that the linear polarization angle, both at 86 and 229GHz, and the jet structural position angle for both quasars and BL Lacs do not show a clear preference to align in either parallel or perpendicular directions. Our variability study with regard to the 86GHz data from our previous survey points out a large degree variation of total flux and linear polarization in time scales of years by median factors of ~1.5 in total flux, and ~1.7 in linear polarization degree -maximum variations by factors up to 6.3, and ~5, respectively-, with 86% of sources showing linear polarization angles evenly distributed with regard to our previous measurements.Comment: Submitted for Publication in Astronomy & Astrophysics. 14 pages (including 2 tables and 18 figures

    CO and HI observations of an enigmatic cloud

    Full text link
    An isolated HI cloud with peculiar properties has recently been discovered by Dedes, Dedes, & Kalberla (2008, A&A, 491, L45) with the 300-m Arecibo telescope, and subsequently imaged with the VLA. It has an angular size of ~6', and the HI emission has a narrow line profile of width ~ 3 km/s. We explore the possibility that this cloud could be associated with a circumstellar envelope ejected by an evolved star. Observations were made in the rotational lines of CO with the IRAM-30m telescope, on three positions in the cloud, and a total-power mapping in the HI line was obtained with the Nancay Radio Telescope. CO was not detected and seems too underabundant in this cloud to be a classical late-type star circumstellar envelope. On the other hand, the HI emission is compatible with the detached-shell model that we developed for representing the external environments of AGB stars. We propose that this cloud could be a fossil circumstellar shell left over from a system that is now in a post-planetary-nebula phase. Nevertheless, we cannot rule out that it is a Galactic cloud or a member of the Local Group, although the narrow line profile would be atypical in both cases.Comment: Accepted for publication in Astronomy and Astrophysic

    Circumstellar HI and CO around the carbon stars V1942 Sgr and V CrB

    Full text link
    Context. The majority of stars that leave the main sequence are undergoing extensive mass loss, in particular during the asymptotic giant branch (AGB) phase of evolution. Observations show that the rate at which this phenomenon develops differs highly from source to source, so that the time-integrated mass loss as a function of the initial conditions (mass, metallicity, etc.) and of the stage of evolution is presently not well understood. Aims. We are investigating the mass loss history of AGB stars by observing the molecular and atomic emissions of their circumstellar envelopes. Methods. In this work we have selected two stars that are on the thermally pulsing phase of the AGB (TP-AGB) and for which high quality data in the CO rotation lines and in the atomic hydrogen line at 21 cm could be obained. Results. V1942 Sgr, a carbon star of the Irregular variability type, shows a complex CO line profile that may originate from a long-lived wind at a rate of ~ 10^-7 Msol/yr, and from a young (< 10^4 years) fast outflow at a rate of ~ 5 10^-7 Msol/yr. Intense HI emission indicates a detached shell with 0.044 Msol of hydrogen. This shell probably results from the slowing-down, by surrounding matter, of the same long-lived wind observed in CO that has been active during ~ 6 10^5 years. On the other hand, the carbon Mira V CrB is presently undergoing mass loss at a rate of 2 10^-7 Msol/yr, but was not detected in HI. The wind is mostly molecular, and was active for at most 3 10^4 years, with an integrated mass loss of at most 6.5 10^-3 Msol. Conclusions. Although both sources are carbon stars on the TP-AGB, they appear to develop mass loss under very different conditions, and a high rate of mass loss may not imply a high integrated mass loss.Comment: Accepted for publication in Astron. Astrophy

    3C 286: a bright, compact, stable, and highly polarized calibrator for millimeter-wavelength observations

    Full text link
    (Context.) A number of millimeter and submillimeter facilities with linear polarization observing capabilities have started operating during last years. These facilities, as well as other previous millimeter telescopes and interferometers, require bright and stable linear polarization calibrators to calibrate new instruments and to monitor their instrumental polarization. The current limited number of adequate calibrators implies difficulties in the acquisition of these calibration observations. (Aims.) Looking for additional linear polarization calibrators in the millimeter spectral range, in mid-2006 we started monitoring 3C 286, a standard and highly stable polarization calibrator for radio observations. (Methods.) Here we present the 3 and 1 mm monitoring observations obtained between September 2006 and January 2012 with the XPOL polarimeter on the IRAM 30 m Millimeter Telescope. (Results.) Our observations show that 3C 286 is a bright source of constant total flux with 3 mm flux density S_3mm = (0.91 \pm 0.02) Jy. The 3mm linear polarization degree (p_3mm =[13.5\pm0.3]%) and polarization angle (chi_3mm =[37.3\pm0.8]deg.,expressed in the equatorial coordinate system) are also constant during the time span of our observations. Although with poorer time sampling and signal-to-noise ratio, our 1 mm observations of 3C 286 are also reproduced by a constant source of 1 mm flux density (S_1mm = [0.30 \pm 0.03] Jy), polarization fraction (p_1mm = [14.4 \pm 1.8] %), and polarization angle (chi_1mm = [33.1 \pm 5.7]deg.). (Conclusions.) This, together with the previously known compact structure of 3C 286 -extended by ~3.5" in the sky- allow us to propose 3C 286 as a new calibrator for both single dish and interferometric polarization observations at 3 mm, and possibly at shorter wavelengths.Comment: Accepted for publication in A&A. 7 pages, 4 figures, 8 tables. Updated data sets with regard to previous version. New discussion about multi frequency properties of the source. Section 3.3, Figures 3 and 4, and Tables 7 and 8 are ne

    Measurement of the Crab nebula polarization at 90 GHz as a calibrator for CMB experiments

    Full text link
    CMB experiments aiming at a precise measurement of the CMB polarization, such as the Planck satellite, need a strong polarized absolute calibrator on the sky to accurately set the detectors polarization angle and the cross-polarization leakage. As the most intense polarized source in the microwave sky at angular scales of few arcminutes, the Crab nebula will be used for this purpose. Our goal was to measure the Crab nebula polarization characteristics at 90 GHz with unprecedented precision. The observations were carried out with the IRAM 30m telescope employing the correlation polarimeter XPOL and using two orthogonally polarized receivers. We processed the Stokes I, Q, and U maps from our observations in order to compute the polarization angle and linear polarization fraction. The first is almost constant in the region of maximum emission in polarization with a mean value of alpha_Sky=152.1+/-0.3 deg in equatorial coordinates, and the second is found to reach a maximum of Pi=30% for the most polarized pixels. We find that a CMB experiment having a 5 arcmin circular beam will see a mean polarization angle of alpha_Sky=149.9+/-0.2 deg and a mean polarization fraction of Pi=8.8+/-0.2%.Comment: Accepted for publication in A&A, 9 pages, 4 figure

    NGC 3576 and NGC 3603: Two Luminous Southern HII Regions Observed at High Resolution with the Australia Telescope Compact Array

    Get PDF
    NGC 3576 (G291.28-0.71; l=291.3o, b=-0.7o) and NGC 3603 (G291.58-0.43; l=291.6o, b=-0.5o) are optically visible, luminous HII regions located at distances of 3.0 kpc and 6.1 kpc, respectively. We present 3.4 cm Australian Telescope Compact Array (ATCA) observations of these two sources in the continuum and the H90a, He90a, C90a and H113b recombination lines with an angular resolution of 7" and a velocity resolution of 2.6 km/s. All four recombination lines are detected in the integrated profiles of the two sources. Broad radio recombination lines are detected in both NGC 3576 (DV_{FWHM}>= 50 km/s) and NGC 3603 (DV_{FWHM}>=70 km/s). In NGC 3576 a prominent N-S velocity gradient (~30 km/s/pc) is observed, and a clear temperature gradient (6000 K to 8000 K) is found from east to west, consistent with a known IR color gradient in the source. In NGC 3603, the H90a, He90a and the H113b lines are detected from 13 individual sources. The Y^+ (He/H) ratios in the two sources range from 0.08+/-0.04 to 0.26+/-0.10. We compare the morphology and kinematics of the ionized gas at 3.4 cm with the distribution of stars, 10 micron emission and H_2O, OH, and CH_3OH maser emission. These comparisons suggest that both NGC 3576 and NGC 3603 have undergone sequential star formation.Comment: 24 pages, 12 Postscript figure

    Transition-Metal-Doping of CaO as Catalyst for the OCM Reaction, a Reality Check

    Get PDF
    In this study, first-row transition metal-doped calcium oxide materials (Mn, Ni, Cr, Co., and Zn) were synthesized, characterized, and tested for the OCM reaction. Doped carbonate precursors were prepared by a co-precipitation method. The synthesis parameters were optimized to yield materials with a pure calcite phase, which was verified by XRD. EPR measurements on the doped CaO materials indicate a successful substitution of Ca2+ with transition metal ions in the CaO lattice. The materials were tested for their performance in the OCM reaction, where a beneficial effect towards selectivity and activity effect could be observed for Mn, Ni, and Zn-doped samples, where the selectivity of Co- and Cr-doped CaO was strongly reduced. The optimum doping concentration could be identified in the range of 0.04-0.10 atom%, showing the strongest decrease in the apparent activation energy, as well as the maximum increase in selectivity

    Dissecting the transcriptome in cardiovascular disease

    Get PDF
    The human transcriptome comprises a complex network of coding and non-coding RNAs implicated in a myriad of biological functions. Non-coding RNAs exhibit highly organized spatial and temporal expression patterns and are emerging as critical regulators of differentiation, homeostasis, and pathological states, including in the cardiovascular system. This review defines the current knowledge gaps, unmet methodological needs, and describes the challenges in dissecting and understanding the role and regulation of the non-coding transcriptome in cardiovascular disease. These challenges include poor annotation of the non-coding genome, determination of the cellular distribution of transcripts, assessment of the role of RNA processing and identification of cell-type specific changes in cardiovascular physiology and disease. We highlight similarities and differences in the hurdles associated with the analysis of the non-coding and protein-coding transcriptomes. In addition, we discuss how the lack of consensus and absence of standardized methods affect reproducibility of data. These shortcomings should be defeated in order to make significant scientific progress and foster the development of clinically applicable non-coding RNA-based therapeutic strategies to lessen the burden of cardiovascular disease
    corecore