16 research outputs found

    Case Study: Mouse Parvovirus Outbreak Likely Caused by a Contaminated Commercial Lyophilized Antibody Powder

    Get PDF
    An MPV-contaminated lyophilized antibody product obtained from a commercial vendor was the probable cause of an outbreak of mouse parvovirus (MPV) in an academic research institution. The outbreak was initially discovered by the seroconversion of the mouse sentinels receiving soiled bedding from the affected cage(s). After further investigation, a suspected antibody product was submitted to a diagnostic laboratory and the sample tested positive for MPV via polymerase chain reaction (PCR). To confirm administration of this product to mice could produce MPV infection, we inoculated the MPV-positive antibody product into experimental mice (n=5). We collected faecal pellets at Days 0, 5, 9, 12, and 14 post-inoculation. At the end of the experimental period, we collected mesenteric lymph nodes (mLN) and submitted both mLN and faecal pellets for MPV analysis via PCR. While all faecal pellets were negative for MPV, we were able to detect MPV in mLN from one of the five mice, thus replicating the likely method of transmission and the cause of the MPV outbreaks

    Advanced Subsonic Technology (AST) 22-Inch Low Noise Research Fan Rig Preliminary Design of ADP-Type Fan 3

    No full text
    This report presents results of the work completed on the preliminary design of Fan 3 of NASA s 22-inch Fan Low Noise Research project. Fan 3 was intended to build on the experience gained from Fans 1 and 2 by demonstrating noise reduction technology that surpasses 1992 levels by 6 dB. The work was performed as part of NASA s Advanced Subsonic Technology (AST) program. Work on this task was conducted in the areas of CFD code validation, acoustic prediction and validation, rotor parametric studies, and fan exit guide vane (FEGV) studies up to the time when a NASA decision was made to cancel the design, fabrication and testing phases of the work. The scope of the program changed accordingly to concentrate on two subtasks: (1) Rig data analysis and CFD code validation and (2) Fan and FEGV optimization studies. The results of the CFD code validation work showed that this tool predicts 3D flowfield features well from the blade trailing edge to about a chord downstream. The CFD tool loses accuracy as the distance from the trailing edge increases beyond a blade chord. The comparisons of noise predictions to rig test data showed that both the tone noise tool and the broadband noise tool demonstrated reasonable agreement with the data to the degree that these tools can reliably be used for design work. The section on rig airflow and inlet separation analysis describes the method used to determine total fan airflow, shows the good agreement of predicted boundary layer profiles to measured profiles, and shows separation angles of attack ranging from 29.5 to 27deg for the range of airflows tested. The results of the rotor parametric studies were significant in leading to the decision not to pursue a new rotor design for Fan 3 and resulted in recommendations to concentrate efforts on FEGV stator designs. The ensuing parametric study on FEGV designs showed the potential for 8 to 10 EPNdB noise reduction relative to the baseline

    Mother-plant-mediated pumping of zinc into the developing seed

    No full text
    International audienceInsufficient intake of zinc and iron from a cereal-based diet is one of the causes of ‘hidden hunger’ (micronutrient deficiency), which affects some two billion people1,2. Identifying a limiting factor in the molecular mechanism of zinc loading into seeds is an important step towards determining the genetic basis for variation of grain micronutrient content and developing breeding strategies to improve this trait3. Nutrients are translocated to developing seeds at a rate that is regulated by transport processes in source leaves, in the phloem vascular pathway, and at seed sinks. Nutrients are released from a symplasmic maternal seed domain into the seed apoplasm surrounding the endosperm and embryo by poorly understood membrane transport processes4,​5,​6. Plants are unique among eukaryotes in having specific P1B-ATPase pumps for the cellular export of zinc7. In Arabidopsis, we show that two zinc transporting P1B-ATPases actively export zinc from the mother plant to the filial tissues. Mutant plants that lack both zinc pumps accumulate zinc in the seed coat and consequently have vastly reduced amounts of zinc inside the seed. Blockage of zinc transport was observed at both high and low external zinc supplies. The phenotype was determined by the mother plant and is thus due to a lack of zinc pump activity in the seed coat and not in the filial tissues. The finding that P1B-ATPases are one of the limiting factors controlling the amount of zinc inside a seed is an important step towards combating nutritional zinc deficiency worldwide

    Sodium-hydrogen exchange inhibition by cariporide to reduce the risk of ischemic cardiac events in patients undergoing coronary artery bypass grafting: results of the EXPEDITION study.

    Get PDF
    BACKGROUND: The EXPEDITION study addressed the efficacy and safety of inhibiting the sodium hydrogen exchanger isoform-1 (NHE-1) by cariporide in the prevention of death or myocardial infarction (MI) in patients undergoing coronary artery bypass graft surgery. The premise was that inhibition of NHE-1 limits intracellcular Na accumulation and thereby limits Na/Ca-exchanger-mediated calcium overload to reduce infarct size. METHODS: High-risk coronary artery bypass graft surgery patients (n = 5,761) were randomly allocated to receive either intravenous cariporide (180 mg in a 1-hour preoperative loading dose, then 40 mg per hour over 24 hours and 20 mg per hour over the subsequent 24 hours) or placebo. The primary composite endpoint of death or MI was assessed at 5 days, and patients were followed for as long as 6 months. RESULTS: At 5 days, the incidence of death or MI was reduced from 20.3% in the placebo group to 16.6% in the treatment group (p = 0.0002). Paradoxically, MI alone declined from 18.9% in the placebo group to 14.4% in the treatment group (p = 0.000005), while mortality alone increased from 1.5% in the placebo group to 2.2% with cariporide (p = 0.02). The increase in mortality was associated with an increase in cerebrovascular events. Unlike the salutary effects that were maintained at 6 months, the difference in mortality at 6 months was not significant. CONCLUSIONS: The EXPEDITION study is the first phase III myocardial protection trial in which the primary endpoint was achieved and proof of concept demonstrated. As a result of increased mortality associated with an increase in cerebrovascular events, it is unlikely that cariporide will be used clinically. The findings suggest that sodium hydrogen exchanger isoform-1 inhibition holds promise for a new class of drugs that could significantly reduce myocardial injury associated with ischemia-reperfusion injury

    Global Phylogeny of the Brassicaceae Provides Important Insights into Gene Discordance

    No full text
    The mustard family (Brassicaceae) is a scientifically and economically important family, containing the model plant Arabidopsis thaliana and numerous crop species that feed billions worldwide. Despite its relevance, most published family phylogenies are incompletely sampled, generally contain massive polytomies, and/or show incongruent topologies between datasets. Here, we present the most complete Brassicaceae genus-level family phylogenies to date (Brassicaceae Tree of Life, or BrassiToL) based on nuclear (>1,000 genes, almost all 349 genera and 53 tribes) and plastome (60 genes, 79% of the genera, all tribes) data. We found cytonuclear discordance between nuclear and plastome-derived phylogenies, which is likely a result of rampant hybridisation among closely and more distantly related species, and highlight rogue taxa. To evaluate the impact of this rampant hybridisation on the nuclear phylogeny reconstruction, we performed four different sampling routines that increasingly removed variable data and likely paralogs. Our resulting cleaned subset of 297 nuclear genes revealed high support for the tribes, while support for the main lineages remained relatively low. Calibration based on the 20 most clock-like nuclear genes suggests a late Eocene to late Oligocene ‘icehouse origin’ of the family. Finally, we propose five new or re-established tribes, including the recognition of Arabidopsideae, a monotypic tribe to accommodate Arabidopsis. With a worldwide community of thousands of researchers working on this family, our new, densely sampled family phylogeny will be an indispensable tool to further highlight Brassicaceae as an excellent model family for studies on biodiversity and plant biology

    Global Brassicaceae phylogeny based on filtering of 1,000-gene dataset

    No full text
    The mustard family (Brassicaceae) is a scientifically and economically important family, containing the model plant Arabidopsis thaliana and numerous crop species that feed billions worldwide. Despite its relevance, most phylogenetic trees of the family are incompletely sampled and often contain poorly supported branches. Here, we present the most complete Brassicaceae genus-level family phylogenies to date (Bras-sicaceae Tree of Life or BrassiToL) based on nuclear (1,081 genes, 319 of the 349 genera; 57 of the 58 tribes) and plastome (60 genes, 265 genera; all tribes) data. We found cytonuclear discordance between the two, which is likely a result of rampant hybridization among closely and more distantly related lineages. To eval-uate the impact of such hybridization on the nuclear phylogeny reconstruction, we performed five different gene sampling routines, which increasingly removed putatively paralog genes. Our cleaned subset of 297 genes revealed high support for the tribes, whereas support for the main lineages (supertribes) was moder-ate. Calibration based on the 20 most clock-like nuclear genes suggests a late Eocene to late Oligocene origin of the family. Finally, our results strongly support a recently published new family classification, dividing the family into two subfamilies (one with five supertribes), together representing 58 tribes. This includes five recently described or re-established tribes, including Arabidopsideae, a monogeneric tribe accommodating Arabidopsis without any close relatives. With a worldwide community of thousands of researchers working on Brassicaceae and its diverse members, our new genus-level family phylogeny will be an indispensable tool for studies on biodiversity and plant biology

    Global Brassicaceae phylogeny based on filtering of 1,000-gene dataset

    No full text
    Abstract: The mustard family (Brassicaceae) is a scientifically and economically important family, containing the model plant Arabidopsis thaliana and numerous crop species that feed billions worldwide. Despite its relevance, most phylogenetic trees of the family are incompletely sampled and often contain poorly supported branches. Here, we present the most complete Brassicaceae genus-level family phylogenies to date (Bras-sicaceae Tree of Life or BrassiToL) based on nuclear (1,081 genes, 319 of the 349 genera; 57 of the 58 tribes) and plastome (60 genes, 265 genera; all tribes) data. We found cytonuclear discordance between the two, which is likely a result of rampant hybridization among closely and more distantly related lineages. To eval-uate the impact of such hybridization on the nuclear phylogeny reconstruction, we performed five different gene sampling routines, which increasingly removed putatively paralog genes. Our cleaned subset of 297 genes revealed high support for the tribes, whereas support for the main lineages (supertribes) was moder-ate. Calibration based on the 20 most clock-like nuclear genes suggests a late Eocene to late Oligocene origin of the family. Finally, our results strongly support a recently published new family classification, dividing the family into two subfamilies (one with five supertribes), together representing 58 tribes. This includes five recently described or re-established tribes, including Arabidopsideae, a monogeneric tribe accommodating Arabidopsis without any close relatives. With a worldwide community of thousands of researchers working on Brassicaceae and its diverse members, our new genus-level family phylogeny will be an indispensable tool for studies on biodiversity and plant biology
    corecore