86 research outputs found

    Silicate electrochemical measurements in seawater: chemical and analytical aspects towards a reagentless sensor

    Get PDF
    From the study of molybdenum oxidation in aqueous solutions we developed a semi-autonomous method to detect silicate in aqueous samples. Molybdenum oxidation was used to form molybdate in acidic media. The silicomolybdic complex formed with silicate is detectable by amperometry or cyclic voltammetry. The new electrochemical method is in good agreement with the method conventionally used for environmental water silicate analysis. In the second stage, a completely reagentless method was developed using molybdate and proton produced during molybdenum oxidation. Reproducibility tests show a precision of 2.6% for a concentration of 100 μmol L−1. This new method will be very suitable for the development of new autonomous silicate sensors easy to handle and without reagents. In this paper we present the analytical and chemical aspects necessary for a complete documentation of the method before the development of a new reagentless sensor

    Reagentless and calibrationless silicate measurement in oceanic waters

    Get PDF
    Determination of silicate concentration in seawater without addition of liquid reagents was the key prerequisite for developing an autonomous in situ electrochemical silicate sensor (Lacombe et al., 2007) [11]. The present challenge is to address the issue of calibrationless determination. To achieve such an objective, we chose chronoamperometry performed successively on planar microelectrode (ME) and ultramicroelectrode (UME) among the various possibilities. This analytical method allows estimating simultaneously the diffusion coefficient and the concentration of the studied species. Results obtained with ferrocyanide are in excellent agreement with values of the imposed concentration and diffusion coefficient found in the literature. For the silicate reagentless method, successive chronoamperometric measurements have been performed using a pair of gold disk electrodes for both UME and ME. Our calibrationless method was tested with different concentrations of silicate in artificial seawater from 55 to 140×10−6 mol L−1. The average value obtained for the diffusion coefficient of the silicomolybdic complex is 2.2±0.4×10−6 cm2 s−1, consistent with diffusion coefficient values of molecules in liquid media. Good results were observed when comparing known concentration of silicate with experimentally derived ones. Further work is underway to explore silicate determination within the lower range of oceanic silicate concentration, down to 0.1×10−6 mol L−1

    Silicate determination in sea water: toward a reagentless electrochemical method

    Get PDF
    ilicate has been determined in sea water by four different electrochemical methods based on the detection of the silicomolybdic complex formed in acidic media by the reaction between silicate and molybdenum salts. The first two methods are based on the addition of molybdate and protons in a seawater sample in an electrochemical cell. Cyclic voltammetry presents two reduction and two oxidation peaks giving four values of the concentration and therefore increasing the precision. Then chronoamperometry is performed on an electrode held at a constant potential. A semi-autonomous method has been developed based on the electrochemical anodic oxidation of molybdenum, the complexation of the oxidation product with silicate and the detection of the complex by cyclic voltammetry. This method is tested and compared with the classical colorimetric one during ANT XXIII/3 cruise across Drake Passage (January–February 2006). The detection limit is 1 μM and the deviation between both methods is less than 3% for concentrations higher than 10 μM. Finally a complete reagentless method with a precision of 2.6% is described based on the simultaneous formation of the molybdenum salt and protons in a divided electrochemical cell. This latter method should be very useful for developing a reagentless sensor suitable for long term in situ deployments on oceanic biogeochemical observatories

    Reagentless and silicate interference free electrochemical phosphate determination in seawater

    Get PDF
    An electrochemical method for phosphate determination in seawater was based on the oxidation of molybdenum in order to form molybdates and protons and subsequently, to create the phosphomolybdic complex electrochemically detectable by means of amperometry at a rotating gold disk electrode [J. Jonca et al., Talanta 87 (2011) 161]. To avoid silicate interferences, the method required an appropriate ratio of protons over molybdates equal to 70. Since the ratio of protons over molybdates created during molybdenum oxidation is only 8, the previous method still needed addition of sulfuric acid and thus was not free from addition of liquid reagents. In the present work, this aspect is solved by modification of the electrochemical cell construction. The method is now totally free from addition of any liquid reagents and gives a possibility to determine phosphate by amperometry in the concentrations range found in the open ocean with a detection limit of 0.11 µM. Having in mind the energy savings for future in situ sensor development, amperometry at rotating gold disk electrode was replaced by differential pulse voltammetry at static one. Phosphate can then be determined with a detection limit of 0.19 µM. Both methods are characterized by good reproducibility with an average measurements precision of 5.7% (amperometry) and 3.8% (differential pulse voltammetry). Results also show a good accuracy with an average deviation from theoretical values of phosphate concentration of 3.1% for amperometry and 3.7% for differential pulse voltammetry

    Direct evidence of amine-metal reaction in epoxy systems: An in situ calorimetry study of the interphase formation

    Get PDF
    Epoxy resins are ubiquitously encountered in industrial applications as in adhesives and composites. The properties of epoxy-amine networks are directly impacted by the presence of metal (hydr-oxidized) surfaces, leading to a modification of their glass transition temperature Tg. We propose here an innovative experimental approach, investigating the interaction of DETA amine and DGEBA epoxy with Al and Cu powder substrates (partially (hydr)oxidized). We explored for the first time the formation of the amine-metal interphase by in situ mixing calorimetry to evaluate the energetics of interaction. While DGEBA interacted only slightly with Al-based surface, the reaction with DETA was associated with a high exothermic enthalpy of reaction. The enhancing role of surface hydroxylation was also evidenced by comparing boehmited Al to a simply oxidized counterpart. An even larger exothermic effect was measured with copper, which was related to the high chelating power of Cu compared to Al. The possible underlying mechanism of amine-metal interphase formation was discussed with a generalized schematic

    High-temperature cyclic oxidation of Pt-rich γ-γ’ bond-coatings. Part II: Effect of Pt and Al on TBC system lifetime

    Get PDF
    Three kinds of Pt-rich γ-γ’ bond-coating were processed with different contents in Pt and Al. The cyclic oxidation tests performed at 1100 °C on TBC systems showed the superiority of the Pt-rich γ-γ’ coatings when compared with the β-(Ni,Pt)Al reference system. TBCs with a Pt-only bond-coating provided the highest performance. Whatever the bond-coating, the failure occurred at the TGO/bond-coating interface which appeared to be the weak point of these γ-γ’ bond-coating based systems. Al addition during bond-coating fabrication did not improve the durability. A decrease of 2 μm of electroplated Pt thickness led to a higher performance than the reference systems

    Fibers and sol-gel matrix based thermal barrier coating systems for outstanding durability

    Get PDF
    Thermal barrier coatings (TBC) are critical elements of the turbomachines. On turbine blades for aircraft engines, their preparation is based on EB-PVD industrial process. Such TBCs on first generation AM1 superalloy with a beta-NiPtAl bond coating exhibit 20% of surface spallation after about 600 1h oxidation cycles at 1100°C. In this work, a new method of TBC preparation was proposed and high durability of such structures was obtained with more than 1000 1h cycles at 1100°C before 20% of spallation. More than 1400 1h cycles was even obtained with the most performing formulations. A key point was that the surface spallation was lower than 10 % after 1000 cycles for TBCs made with the 70% and 80% fiber mix (Figure 1a). In the same conditions, EB-PVD TBCs exhibit 50-80% of spallation. The preparation process relied on the addition of a high temperature binder, namely a zirconia sol, to a mix of zirconia powder and fibers. TBCs with equiaxed porosity were obtained (Figure 1b). After thermal treatments, ceramic sintering bridges between the powder, the fibers and the ceramic derived from the sol transformation formed (Figure 1c). Another benefit was obtained from the anchoring of the fibers in the thermally grown oxide (TGO), inducing a tougher TGO layer. The outstanding durability of these fibers and sol-gel matrix based thermal barrier coatings is believed to be the consequence of higher toughness of both the TBC coating and modified TGO. Indeed, crack deviations were observed in these two elements. Moreover, contrary to EB-PVD TBCs, the porosity is isotropically distributed, limiting heat diffusion towards the superalloys. Please click Additional Files below to see the full abstract

    First successful stabilization of consolidated amorphous calcium phosphate (ACP) by cold sintering: toward highly-resorbable reactive bioceramics

    Get PDF
    In the field of bone regeneration, some clinical conditions require highly-resorbable, reactive bone substitutes to rapidly initiate tissue neo-formation. In this view, Amorphous Calcium Phosphates (ACP) appear as well suited bioceramics taking into account their high metastability. However, the metastability also leads to difficulties of sintering without transformation into crystalline compounds. In this work, various calcium phosphate samples (co)doped with carbonate (CO32−) and magnesium ions were synthesized by the double decomposition method in alkaline media using ammonium and potassium hydroxide solutions. The obtained amorphous powders possess an exceptionally-high carbonate content up to 18.3 wt%. Spark Plasma Sintering (SPS) at very low temperature (150 °C) was then utilized to consolidate initial powders with the view to preserve their amorphous character. The influence of the introduction of different apatite growth inhibitors such as carbonate (CO32−) and magnesium ions was studied. XRD and FTIR analyses revealed that sintered ceramics generally consisted in highly carbonated low-crystallinity apatites, which are expected to have higher solubility than conventional apatite-based systems. However, most interestingly, modulation of the doping conditions allowed us to retain, for the first time, the amorphous character of ACP powders after SPS. Such consolidated ACP compounds may now be considered as a new family of bioceramics with high metastability allowing the fast release of bioactive ions upon resorption

    Interaction of Folic Acid with Nanocrystalline Apatites and Extension to Methotrexate (Antifolate) in View of Anticancer Applications

    Get PDF
    Nanocrystalline apatites mimicking bone mineral represent a versatile platform for biomedical applications thanks to their similarity to bone apatite and the possibility to (multi)functionalize them so as to provide “à la carte” properties. One relevant domain is in particular oncology, where drug-loaded biomaterials and engineered nanosystems may be used for diagnosis, therapy, or both. In a previous contribution, we investigated the adsorption of doxorubicin onto two nanocrystalline apatite substrates, denoted HA and FeHA (superparamagnetic apatite doped with iron ions), and explored these drug-loaded systems against tumor cells. To widen their applicability in the oncology field, here we examine the interaction between the same two substrates and two other molecules: folic acid (FA), often used as cell targeting agent, and the anticancer drug methotrexate (MTX), an antifolate analogue. In a first stage, we investigated the adsorptive behavior of FA (or MTX) on both substrates, evidencing their specificities. At low concentration, typically under 100 mmol/L, adsorption onto HA was best described using the Sips isotherm model, while the formation of a calcium folate secondary salt was evidenced at high concentration by Raman spectroscopy. Adsorption onto FeHA was instead fitted to the Langmuir model. A larger adsorptive affinity was found for the FeHA substrate compared to HA; accordingly, a faster release was noticed from HA. In vitro tests carried out on human osteosarcoma cell line (SAOS-2) allowed us to evaluate the potential of these compounds in oncology. Finally, in vivo (subcutaneous) implantations in the mouse were run to ascertain the biocompatibility of the two substrates. These results should allow a better understanding of the interactions between FA/MTX and bioinspired nanocrystalline apatites in view of applications in the field of cancer
    corecore