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ABSTRACT: Nanocrystalline apatites mimicking bone min-
eral represent a versatile platform for biomedical applications
thanks to their similarity to bone apatite and the possibility to
(multi)functionalize them so as to provide “a ̀ la carte”
properties. One relevant domain is in particular oncology,
where drug-loaded biomaterials and engineered nanosystems
may be used for diagnosis, therapy, or both. In a previous
contribution, we investigated the adsorption of doxorubicin
onto two nanocrystalline apatite substrates, denoted HA and
FeHA (superparamagnetic apatite doped with iron ions), and
explored these drug-loaded systems against tumor cells. To
widen their applicability in the oncology field, here we
examine the interaction between the same two substrates and two other molecules: folic acid (FA), often used as cell targeting
agent, and the anticancer drug methotrexate (MTX), an antifolate analogue. In a first stage, we investigated the adsorptive
behavior of FA (or MTX) on both substrates, evidencing their specificities. At low concentration, typically under 100 mmol/L,
adsorption onto HA was best described using the Sips isotherm model, while the formation of a calcium folate secondary salt
was evidenced at high concentration by Raman spectroscopy. Adsorption onto FeHA was instead fitted to the Langmuir model.
A larger adsorptive affinity was found for the FeHA substrate compared to HA; accordingly, a faster release was noticed from
HA. In vitro tests carried out on human osteosarcoma cell line (SAOS-2) allowed us to evaluate the potential of these
compounds in oncology. Finally, in vivo (subcutaneous) implantations in the mouse were run to ascertain the biocompatibility
of the two substrates. These results should allow a better understanding of the interactions between FA/MTX and bioinspired
nanocrystalline apatites in view of applications in the field of cancer.

1. INTRODUCTION

Calcium phosphates have attracted attention for decades in the
biomaterials field, especially for bone repair applications.1−4 In
this view, apatitic compounds are of particular significance as
they are naturally present in bones and teeth of which they
constitute the mineral component.5 However, in bone and
dentin, apatite crystals differ significantly from the well-known
stoichiometric hydroxyapatite (HA), Ca10(PO4)6(OH)2, often
encountered as bone replacement bioceramics, in that they are
nonstoichiometric (involving calcium and hydroxide vacan-
cies), but also are nanosized, hydrated and exhibit specific
surface features.6,7 Interestingly, these characteristics can be
mimicked and tailored synthetically, employing adequate soft
chemistry routes such as low/moderate temperature precip-

itation methods,8−13 hydrothermal synthesis,14−16 sol−
gel,17−19 vapor diffusion,20,21 emulsion-based processes,22

among others. The as-obtained materials are usually called
biomimetic or nanocrystalline apatites.
Nowadays, the synthesis of biomimetic apatites, their

processing, and associations with drugs constitutes a large
domain of investigation worldwide, aiming to exploit further
the fascinating properties of these compounds, including their
“intrinsic” biocompatibility, biodegradability, bioactivity, and
high surface reactivity.5,23 The latter in particular allows
associating a great variety of biomolecules or drugs with apatite
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nanocrystals by adsorptive processes; and several examples
have been reported in recent years involving antibiotics,24−26

monoclonal antibodies,27 bisphosphonates,28,29 anticancer
drugs,30−33 hemostatic agents,34 antibacterial enzymes,35 and
DNA and nucleotides.36−41 Such nanocrystalline apatites can
be either processed to form “bulk” biomaterials, or dense slurry
generally for bone repair applications, but also in the form of
suspensions of individual nanoparticles for applications in
“nanomedicine” such as for the setup of drug nanocarriers or
nanoprobes for medical imaging (e.g., via fluorescence
marking). In the latter domains, recently, nanocrystalline
apatite nanoparticles have, for example, been used to deliver in
vitro doxorubicin (DOX) to osteosarcoma cells,30 and for the
cryopreservation of erythrocytes (red blood cells)42 where
their ability to interact with cell membranes was exploited.
Research with apatite nanoparticles as novel nanosystems is

in particular appealing in the field of cancer therapy or
diagnosis. In the present research work, we focused on two
types of nanocrystalline apatite compounds, raw or associated
with iron for conferring superparamagnetic properties useful
for hyperthermia, magnetic particle guidance, and imaging by
MRI.30,43−45 The sorption behavior of folic acid (FA) on these
two substrates was explored here from a physicochemical
viewpoint for these two substrates. FA is indeed an interesting
biomolecule in the field of oncology, as it may act as a cell-
targeting agent for addressing nanocarriers more specifically
toward cells overexpressing folate receptors (FR), as in some
breast or ovary cancers.46 Besides, other relevant uses of FA-
functionalized apatite particles can be found as in bone
regeneration where it is possible to exploit an enhanced
osteoblastic differentiation effect.47 Cell targeting capability of
FA-functionalized nanosystems was reported (e.g., from Sun et
al.48) and the increased cell addressing capacity of colloidal
apatite nanoparticles was pointed out previously49 using T-47-
D breast cancer cells as model FR+ cells.
The possibility to master and understand underlying

sorption mechanisms for FA on these two bioinspired apatites
is one objective of the present contribution, since it would
clarify the mode of interaction between bioactive FA molecules
and nanocrystalline apatitic compounds intended for medical
use. Although interaction between FA and calcined, well-
crystallized hydroxyapatite has been the object of a previous
study,50 the use of low-temperature, bone-like nanocrystalline
apatites as substrates for FA sorption has not yet been explored
in detail. In addition, this study may allow to extrapolate the
adsorption behavior of antifolate agents, such as the chemo-
therapy drug methotrexate (MTX) which is also recognized by
folate receptors,51 thus opening novel therapeutic perspectives
for anticancer drug nanocarriers. This proof of principle was
explored in the present work, and in vitro tests were carried
out, to examine efficacy on osteosarcoma cell death.

2. EXPERIMENTAL SECTION
This study follows a work dedicated to the exploration of the
interaction of DOX with either iron-doped (denoted FeHA) and
undoped (denoted HA) nanocrystalline apatite particles.30 The same
two apatite substrates were used here for investigating the interaction
with folic acid (FA) or methotrexate (MTX), thus allowing also
comparisons of sorptive behaviors between DOX and FA/MTX. The
preparation of these two apatite substrates was thus described
elsewhere.30 However, for the sake of completeness, the synthesis
protocols have also been recalled again below.
2.1. Synthesis of Undoped Biomimetic Nanocrystalline

Apatite (HA). The undoped nanocrystalline apatite sample (noted

HA in this study) was obtained via double decomposition at room
temperature and physiological pH (∼7.4) by contacting an aqueous
solution of calcium nitrate (52.2 g Ca(NO3)·4H2O in 750 mL) with a
carbonate and phosphate aqueous solution (165.8 g of (NH4)2HPO4
and 9.0 g of NaHCO3 in 1500 mL). The precipitate was matured in
the reaction medium for 24 h at 50 °C, and then filtered, washed with
deionized water, and freeze-dried. The retrieved powder sample was
sieved (<125 μm) and stored at −18 °C for avoiding any possible
alteration prior to use.

2.2. Synthesis of Superparamagnetic Iron-Doped Nano-
crystalline Apatite (FeHA). Iron-doped apatite (denoted FeHA in
this study) was prepared following a previously set up methodology52

where a H3PO4 aqueous solution (44.4 g in 300 mL) was added to a
calcium hydroxide aqueous suspension (50.0 g of Ca(OH)2 in 400
mL) containing iron chloride salts (12.7 g of FeCl2·4H2O and 17.9 g
of FeCl3·6H2O) as sources of Fe

2+ and Fe3+ ions, respectively, at 40
°C and under constant stirring. After completion of the neutralization
reaction, the medium was maintained in the same conditions for 1 h,
and then matured 24 h at room temperature in static conditions. The
precipitate was isolated from the medium by centrifugation, washed
three times with deionized water by centrifugation, and freeze-dried.
As for the HA compound, the powder sample obtained was sieved
(<125 μm) and stored at −18 °C prior to use.

2.3. Physico-Chemical Characterizations. X-ray diffraction
(XRD) and Fourier transform infrared (FTIR) spectroscopy were
used to analyze the crystallography of the HA and FeHA substrates.
XRD patterns were obtained on a D8 Advance diffractometer (Bruker,
Karlsruhe, Germany) using Cu Kα radiation (λ = 1.54178 Å) and
typically generated at 40 kV and 40 mA. Patterns were recorded in the
10−60° 2θ range with a step size of 0.02° and a counting time of 0.5 s.
Sample crystallite sizes along the c-axis and along the perpendicular
direction were estimated using Scherrer’s formula53 applied to the
(002) and (310) reflections, respectively, at 2θ = 25.8° and 2θ =
39.7°. FTIR analyses were run on a Nicolet 5700 spectrometer
(Thermo Fisher Scientific Inc., Waltham, MA) with a resolution of 2
cm−1 and accumulating 64 scans, in the 400−4000 cm−1 wave-
numbers range, using the KBr pellet method.

Elemental titrations were carried out for checking the apatite
compositions: calcium, phosphate, and iron contents were then
determined by inductively coupled plasma optical emission
spectrometry (ICP-OES) using a Liberty 200 spectrometer (Varian,
Palo Alto, CA). For these analyses, 20 mg of sample was dissolved in
50 mL of HNO3 solution 1 wt %. The carbonate content in the
apatitic phases was carried out by coulometry using a CM 5014
coulometer with CM 5130 acidification unit (UIC Inc., Joliet, IL). All
these chemical titrations were associated with a relative error of about
1%. The specific surface area (SSABET) of the samples was measured
using a BELSORP mini II apparatus (Microtrac, Krefeld, Germany)
via the BET method based on nitrogen adsorption.

Mean particle size (hydrodynamic diameters from dynamic light
scattering, DLS) and overall surface charges (ζ-potential) of HA and
FeHA samples were measured with a Zetasizer Nano ZS (Malvern,
Worcestershire, UK). In these analyses, the nanoparticles (NPs) were
suspended in 0.01 M HEPES buffer at pH 7.4 at a concentration of
0.1 mg/mL. Ten runs of 30 s were performed for each measurement,
and four measurements were carried out for each sample. To evaluate
the stability of apatite NPs in suspension, derived count rate (cps)
were recorded continuously for 60 min. ζ-Potential was evaluated by
laser Doppler velocimetry based on the concept of electrophoretic
mobility, using disposable electrophoretic cells (Malvern, Worcester-
shire, UK). Twenty runs of 3 s were collected in each measurement.

Transmission electron microscopy (TEM) observations were
realized on a Tecnai F20 microscope (FEI, Hillsboro, OR) equipped
with a Schottky emitter and operating at 120 keV. The instrument was
also equipped with an energy dispersive X-ray spectrometer (EDX)
for X-ray microanalysis on selected areas. Sample preparation involved
dispersion in isopropyl alcohol, treatment with ultrasounds and
deposition of a few droplets of the slurry on holey-carbon foils
supported on copper microgrids (300 mesh).



2.4. Adsorption Experiments. FA adsorption on the two
nanocrystalline apatitic substrates, referred to here as HA and
FeHA, was carried out at 37 °C using a constant solid-to-solution
ratio corresponding to 20 mg of apatite immersed in 5 mL of FA
solution, and for increasing FA concentrations (0−120 mg/mL). To
facilitate FA dissolution and the preparation of increasingly
concentrated FA solutions, the desired amount of FA powder was
introduced in the vials followed by dropwise addition of sodium
hydroxide until obtainment of a clear (yellow) solution indicating that
FA had taken its folate form. Then, water and droplets of hydrochloric
acid were added to finalize the desired volumes of solution and reach
neutral pH. KCl was also added to reach a final concentration of 0.01
M in all vials used for adsorption tests to provide nearly constant ionic
strength. During this immersion step, the vials were placed
horizontally to ensure optimal interaction between the surface of
the apatite substrates and the solution. After the contact time
necessary to reach equilibrium (determined in a preliminary stage),
the system was centrifuged (5000 rpm for 20 min) to separate the
solid from the supernatant, and the latter was analyzed by UV (near
visible) spectrophotometry at λ= 348 nm to quantify FA remaining in
solution. Such spectrophotometry analyses were performed using a
Cary Bio spectrophotometer (Varian, Palo Alto, CA) or alternatively a
Shimadzu 8000 UV−vis spectrophotometer. The adsorbed amount
was determined from the difference between the initial and
supernatant concentrations. Some selected concentrations of MTX
replacing FA were also used, when mentioned in the text, to check the
similarity of adsorption behavior between FA and MTX, since MTX is
an antifolate whose molecule highly resembles that of FA (Figure 1).
In this case, MTX absorption was followed at λ = 372 nm.

Confocal Raman microscopy (LabRAM HR800 microspectrom-
eter, Horiba Jobin-Yvon) was also used for comparisons before and
after FA adsorption. For these analyses, performed in the range 100−
2000 cm−1, the samples were exposed in backscattering mode to
either a He/Ne laser (λ = 633 nm) with a power of 10 mW or with an
Ar (diode) laser (λ = 532 nm) with a power of 17 mW, depending on
FA fluorescence artifacts. The uncertainty on Raman shifts (<1 cm−1)
have been calibrated using a silicon standard at 520.7 cm−1. An optical
objective ×100 was used for all analyses, conferring to the system a
lateral resolution of ∼0.8 μm and an axial resolution in the range 2.6−
3.1 μm. In addition, to retain the integrity of the FA and FA/apatite
samples, an opacity filter was used. The spectra reported in this work
are the average of 3−5 spectral accumulations, where the exposure
time was adapted to the sample. The amounts of phosphate ions
present in the supernatant after adsorption were titrated by ICP-OES
at λ = 214.914 nm (Ultima 2, Horoba Jobin Yvon).
FTIR, DLS, and ζ-potential analyses on the nanoparticles loaded

with FA were carried out as reported above for the unfunctionalized
apatites.
2.5. Release Experiments. FA release experiments from HA and

FeHA (functionalized with maximum loading amount of FA) were

carried out at 37 °C in the presence or absence of a pulsed
electromagnetic field (PEMF). Investigations in the presence of
PEMF were achieved placing the samples in the form of powder in a
homemade device as previously reported,54 consisting in a windowed
PMMA tube carrying a well-plate containing the samples and two
solenoids (i.e., Helmoltz coils, the planes of which were parallel). The
generated magnetic field and induced electric field were respectively
perpendicular and parallel to the samples, which were distant 5 cm
from each solenoid plane, and a Biostim SPT pulse generator (Igea,
Carpi, Italy) powered the solenoids. The electromagnetic stimulus
had the following parameters: intensity of magnetic field 2.0 ± 0.2
mT, frequency of 75 ± 2 Hz, amplitude of induced electrical tension 5
± 1 mV, pulse duration of 1.3 ms. For the release experiments, 5 mg
of drug-apatite samples were immersed in 2.5 mL of HEPES at pH 7.4
(0.01 M HEPES, 0.01 M KCl), and samplings were drawn at selected
time points over 6 days. After measurement of the temperature of the
samples exposed to the PEMF, samples were then centrifuged (5000
rpm for 5 min) to separate the solid phase from the supernatant which
was titrated for FA by UV spectrophotometry.

To complement this study, additional release (desorption) tests
were also carried out, when mentioned in the text, at 37 °C in isotonic
NaCl 0.9 wt %, with or without addition of potassium dihydrogen
phosphate KH2PO4 (0.02 M).

2.6. In Vitro Evaluations. Human osteosarcoma cell line SAOS-
2, obtained from the ATCC cell bank (Manassas, VA), was cultured
in DMEM F12 (GIBCO), 10% FBS, and 100 U/mL penicillin/
streptomycin. Cells were plated at a density of 5 × 103 cells/well in
96-well plates; 24 h after seeding, the samples were added to the
culture and the cells were maintained in culture for 24, 48, and 72 h.
HA and FeHA loaded with similar amount of MTX (101.8 and 99.6
mg of MTX on 1 g of HA and FeHA, respectively) were added to the
culture at 5 and 50 μM concentration of attached MTX (Table SI1,
Supporting Information). Moreover, the equivalent amounts of
unfunctionalized HA and FeHA NPs used for each sample and free
MTX were tested (Table SI1, Supporting Information). A group of
cells only was used as control group. Cells were incubated under
standard conditions (37 °C, 5% CO2). All cell-handling procedures
were performed in a sterile laminar flow hood.

The MTT reagent (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetra-
zolium bromide) was prepared at 5 mg/mL in 1× PBS. After
experiments, the cell seeded in 96-well plates were incubated with the
MTT reagent 1:10 for 2 h at 37 °C. After that, medium was collected
and cells incubated with 200 μL of dimethyl sulfoxide for 15 min. In
this assay, the metabolically active cells react with the tetrazolium salt
in the MTT reagent to produce a formazan dye that can be observed
at λ max of 570 nm, using a Multiskan FC Microplate Photometer
(Thermo Scientific). This absorbance is directly proportional to the
number of metabolically active cells. Mean values of absorbance were
determined. The samples were analyzed in triplicate.

2.7. Subcutaneous Implantation in Mice. In order to check the
overall biocompatibility of the HA and FeHA substrates, adult
C57BL/6 mice (n = 3) between 10 and 12 weeks of age, weighing an
average of 30 g were used for a subcutaneous implantation study.
Protocol was submitted to the CREFRE ethics committee (CEEA122
US006/CREFRE) with approval number CEEA122:2015-18, in
accordance with the European directive (DE 86/609/CEE; modified
DE 2003/65/CE) for conducting animal experiments. Each animal
received care in compliance to the Guide for The Care and Use of
Laboratory Animals (Institute of Laboratory Animal Resources,
National Research Councils; National Academy Press, revised
1996). They were fed with a standard laboratory diet and tap water
ad libitum. All surgeries were performed under general anesthesia
under sterile conditions. Anesthesia was induced by injection
intraperitoneally (IP) of ketamine (75 mg/kg, Ketamine 500; Virbac
France) and xylazine (5 mg/kg, Rompun; Bayer AG, Germany).
Postoperative analgesia was achieved by injection of buprenorphine
subcutaneously (0.05 mg/kg) every 12 h for 5 days.

The implementations were carried out subcutaneously (para-
vertebral, dorsal) after shaving the surgical site. Each mouse received
two implants, one per side. Both HA and FeHA raw substrates were

Figure 1. Molecular formulas of folic acid (FA) and its antifolate
analogue methotrexate (MTX).
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evaluated here, after pelletizing by uniaxial pressing (HOUNSFIELD
press series S, model H25KS, QMAT software) to obtain cylindrical
pieces (diameter ∼ 5 mm, height ∼ 4.5 mm). 1% lidocaine was
injected subcutaneously before incision. After implanting the surgical
site was closed with sutures (Vicryl) to 4.0. A daily clinical follow-up
was performed. Data regarding the general well-being of the animals
and their weight were recorded throughout the duration of the
experiment. After 3 weeks of implantation, the mice were euthanized
with an intravenous overdose of sodium pentobarbital (150 mg/kg,
Pentobarbital Sodique; CEVA Sante ́ Animale, France) after
administration of anesthesia (same protocol as previously described).
A block resection, including surrounding tissues as well as the
implants, was then performed in view of histological analyses
(hematoxyline-eosine and Masson trichrome staining).
2.8. Statistical Analysis. Experiments were carried out in

triplicate and results were expressed as mean and standard error of
the mean (SEM). Analysis of cell viability was made by two-way
analysis of variance (ANOVA), followed by Bonferroni’s post hoc test.
Statistical analyses were performed by the GraphPad Prism software
(version 5.0), with statistical significance set at p ≤ 0.05.

3. RESULTS AND DISCUSSION
3.1. Physico-Chemical Characteristics of HA and

FeHA Powders. The samples have been characterized in a
previous work.30 The main characteristics are as follows. HA
and FeHA exhibit XRD patterns with weakly defined peaks
that can be indexed after hydroxyapatite crystallographic data
(JCPDS card no. 09-432). The broad and poorly defined
diffraction peaks are peculiar features of nanocrystalline
bonelike apatites.10 For the FeHA sample, the presence of
maghemite Fe2O3 besides apatite was also pointed out by a
peak at 35.4° corresponding to (311) diffraction line of this
iron oxide phase (JCPDS card no. 03-0863), and its amount
was evaluated to be 2.6 ± 0.2 wt %.52 The iron oxide phase
present in the FeHA sample was previously identified as
maghemite also by extended X-ray absorption fine structure
(EXAFS analysis) and Mössbauer spectroscopy.44 FeHA
exhibits a saturation magnetization of 4.00 ± 0.01 Am2 kg−1,
allowing hyperthermia properties with a temperature increase
of about 40 °C in 60 s under an alternating magnetic field of
0.03 N A−1 m−1 at a frequency of 293 kHz as previously
shown.43 Mean crystallite sizes were estimated by applying
Scherrer’s formula to lines (002) and (310), evidencing
crystallites more elongated along the c-axis for FeHA compared
to HA but similar perpendicular dimensions. The specific
surface areas SSABET were respectively of 102 m

2/g for HA and
44 m2/g for FeHA. TEM observation of HA pointed out
elongated NPs (5−10 nm in width and 20−30 nm in length)
while FeHA consisted in needle-like crystals, about 10−30 nm
wide and 70−100 nm long, but composed of smaller
aggregated NPs of about 5−10 nm in width and 10−20 nm
in length. HA particles thus appeared less aggregated than
FeHA, explaining their larger surface area.
ζ-Potential measurements revealed the globally negatively

charged surfaces of the NPs, with values around −18 ± 1 mV
at pH 7.4 for both HA and FeHA. Hydrodynamic diameters
estimated from DLS measurements (around 74 nm for HA and
120 nm for FeHA) confirmed the nanometer size of the
particles.
FTIR spectra of HA and FeHA disclosed the presence of

typical vibration bands for bone-like apatite (i.e., PO4
3− bands

at ca. 560−603 (ν4), 962 (ν1), and 1000−1104 cm−1 (ν3), and
bands at 870 (ν2), 1420 and 1470 cm−1 (ν3) assignable to
CO3

2− vibrations essentially in B sites). Carbonation was found
to be more intense for HA (3.0 ± 0.1 wt %) than FeHA (1.5 ±

0.1 wt %). The Ca/P ratios of HA (1.34 ± 0.03) and FeHA
(1.41 ± 0.03) were in both cases lower than that of
stoichiometric hydroxyapatite (1.67), evidencing the non-
stoichiometry of these compounds as for bone apatite.
All the above physicochemical characteristics point out, for

both compounds, their biomimetic apatitic features, resem-
bling those of bone mineral.5 They were then used as
substrates to study FA (or MTX) sorption behaviors.

3.2. Adsorptive Behavior of FA (or MTX) on HA and
FeHA Substrates. In a first stage, the kinetics of adsorption
(at 37 °C) of FA on HA and FeHA have been explored.
Results plotting the amount of FA adsorbed, Qads (in μmol/
m2), versus time for the same initial concentration, here 1 mg/
mL or 2.27 mmol/L, are given in Figure 2. Despite slightly

faster sorption on HA versus FeHA, rather similar kinetic
trends may be observed in this low FA concentration domain,
and the final adsorbed amounts reached in this case are of the
same order. Mathematical modeling of the kinetics curves for
both compounds has been undergone as previously described
elsewhere,24 and indicates that the best fits are obtained for the
“order n″ and Elovich models (with correlation coefficients R2

close to each other, between 0.977 and 0.995), while other
tested models as pseudo-first or pseudo-second order agree less
well (R2 ≪ 0.92). This reminds the situation obtained for the
adsorption of DOX on the same substrates;30 in general,
Elovich-like kinetics of adsorption are often encountered for
the sorption of polyelectrolytes on heterogeneous surfaces. For
the rest of the adsorption study, a contact time of 90 min was
selected.
It can be noted that contact of the HA and FeHA substrates

with the FA solutions led to a modification of their surface
charge: for example, loading of the substrates with ca. 100 mg
FA/g caused a shift of the ζ-potential of HA and FeHA toward
less negative values (i.e., −9.0 ± 1.0 and −8.7 ± 1.0 mV,
respectively, at pH 7.4). This shift can be tentatively explained
by the interaction of FA with the surface of nanocrystalline
apatite through the two carboxylate end-groups. In this case,
the exposed positively charged amino group contributes to
shift the surface charge of the nanoparticles toward more
positive values. Consequently, the functionalized apatites were
more aggregated, forming less stable suspensions than the bare
ones with an increased mean hydrodynamic diameter of about

Figure 2. Kinetics of adsorption, at 37 °C, of folic acid (FA) on the
two nanocrystalline apatite substrates HA and FeHA.



500 nm for both substrates analyzed by DLS. These
observations are an indirect confirmation of the FA sorption
event at the surface of the solids. More direct analyses arise
from FTIR-ATR investigations allowing us to corroborate the
effective functionalization of the particles with FA (Figure 3).

These results point out spectral modifications of ATR features
when FA is adsorbed on the apatitic substrates, with in
particular the detection in the conjugates of a band at 1605
cm−1 characteristic of FA, in a similar way as was found by
Cipreste et al.50

FA adsorption isotherms (at 37 °C) were then measured for
both substrates by varying the FA concentration. Different
sorption behaviors were obtained on HA and on FeHA, which
are detailed in the following paragraphs. For information, the
percentage of adsorption versus the initial amount incorpo-
rated is also accessible as Supporting Information (Figure SI1),
pointing out a larger adsorption capacity for HA over FeHA.
FA sorption on HA pointed out the existence of two

domains characterized by distinct features as shown on Figure
4a, with first a progressively saturating evolution of Qads
(domain I) followed by a clear break in slope and steeper
increase (domain II).
This general pattern suggests the existence of a secondary

interaction mechanism detectable at high FA concentrations.
Taking into account the ionic character of FA (in the form of
folate ions in our experimental conditions), association with
Ca2+ ions to form a calcium folate salt at increasing folate

concentrations in solution appears as a likely scenario; calcium
ions would originate from the partial dissolution of the HA
surface following a right shift of the following equilibrium:

(folate) Ca Ca(folate)2 2+ ↔− + (1)

Indeed, the formation of this secondary folate-containing salt
would “artificially” consume FA (i.e., not in a way directly
related to the adsorption process of FA on apatite), explaining
the steeper increase noticed in domain II.
Focusing on domain I, that is to say for low to intermediate

FA concentrations (typically up to 100 mmol/L), the isotherm
resembles one of those often encountered with apatitic
substrates (Figure 4). Although fitting to the Langmuir
isotherm model leads to an acceptable R2 coefficient (0.981),
an even better accord is found with the Sips model (R2 ∼
0.984), while the model of Freundlich leads to a poorer
correspondence (R2 ∼ 0.975). Good fitting with the Sips
model has already been observed for the adsorption onto
biomimetic apatites of biomolecules like mono- or triphos-
phate nucleotides or drugs like tetracycline, and more recently
DOX (on the same substrates as in the present
study).24,30,39−41 It points to a situation departing from the
regular Langmuir theory which assumes in particular a lack of
interaction between adjacent adsorbed species. In the present

Figure 3. FTIR-ATR spectra before and after FA adsorption on HA
(a) and FeHA (b).

Figure 4. FA (or MTX) adsorption isotherm at 37 °C on
nanocrystalline apatite sample HA: (a) general view and (b) zoom
on domain I and fit of experimental data to the Sips model.
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case, the following Sips parameters are found: m ∼ 0.81 ±
0.14, K ∼ 0.03425 ± 0.0805 (for Ceq expressed in mmol/L),
and Qmax ∼ 21.25 ± 7.13 μmol FA/m2 apatite. The value of the
exponent m lower than 1 suggests a situation where negative
cooperativity between adjacent sorbed molecules may occur, as
was also inferred for the adsorption of adenosine triphosphate
(ATP) on nanocrystalline apatite.39 The value Qmax ∼ 21.25 ±
7.13 μmol FA/m2 evaluated here from Sips model has not
been experimentally reached within domain I (up to Qads ∼ 12
μmol/m2), since beyond a concentration of about 120 mmol/
L the second phenomenon related to calcium folate formation
gets superimposed. However, even the value of 12 μmol/m2

deserves attention as it is still larger than usually found for the
sorption of (bio)molecules on apatite (see comparative
discussion in ref 30). For DOX adsorption, a surprisingly
high adsorbed amount had been reached too on these two
substrates30 (experimentally noticed up to ∼8 μmol/m2 on HA
and ∼18 μmol/m2 on FeHA); however, in that case, the
involvement of π−π stacking between adjacent DOX
molecules, which exhibit a very characteristic planar con-
formation, came into play.30 In contrast, for FA π stacking
cannot reasonably be claimed (which would require a large
planar molecular domain). On the other hand, examination of
the full FA adsorption isotherm (Figure 4) has led us in the
above discussion to conjecture the formation of a secondary
calcium folate salt at least for high FA concentrations.
Considering the high values of Qads reached here, up to ∼12
μmol/m2 in domain I, the formation of this secondary calcium
folate salt even at lower concentrations also appears plausible
during the FA/apatite immersion to explain our experimental
observations.
To investigate further this point, Raman spectra have been

acquired on FA alone and on precipitated calcium folate
(obtained by mixing FA with calcium chloride at room
temperature followed by filtering, washing and drying) (Figure

5). Raman spectra of FA adsorbed on HA corresponding to FA
adsorbed amounts of 9.7 μmol/m2 (within domain I of the
adsorption isotherm) and 24.4 μmol/m2 (within domain II)
are also reported (Figure 6). Most of the vibrational bands
from the Raman spectrum of pure FA are in concordance with
the literature,55,56 especially with bands in the range 600−1700
cm−1. The most intense contribution is located at 1607 cm−1

and can be related to the stretching vibration of NH from the
pteridine ring of FA. Other medium intensity Raman bands are
observed at 1570 cm−1, 1359 cm−1, between 1150 and 1252
cm−1, and at 682 cm−1 which are attributed to the asymmetric
CN vibration, the CH rocking vibration from the benzoic
acid moiety, the rocking vibration of CN, and the
asymmetric vibration of CC, respectively. Significant shifts
(up to about 10 cm−1) were observed when comparing pure
FA to the calcium folate salt, especially in the OH domain
(around 682 cm−1) toward higher wavenumbers (around 687
cm−1) and in the domain of NH aromatic ring chain vibrations
(around 1607 cm−1) toward lower wavenumbers (1597 cm−1).
Moreover a broadening of the bands and the presence of an
additive contribution around 1212 cm−1 can be observed on
the spectrum of the calcium salt.
Despite the fluorescence of FA, Raman spectra of HA

powders after adsorption showed (Figure 6), as expected, the
presence of the apatitic phase, especially detectable by its
ν1(PO4) characteristic band57,58 at 962 cm−1. Several other
lines, e.g., close to 682 cm−1 (as in pure FA) corresponding to
aromatic ring chain vibrations and at an intermediate position
between 1597 and 1607 cm−1, testify to the presence of FA.
These observations, along with a shift in the domain of the
aromatic ring chain vibrations and the concomitant presence of
the band around 1215 cm−1, are coherent with the adsorption
isotherm data suggesting the formation of a calcium folate salt
besides FA adsorbed on HA (for both domains I and II of the
adsorption isotherm).

Figure 5. Raman spectra for pure FA and precipitated calcium folate.



The conjunction of all the results above (general shape of
adsorption isotherm, high Qads values, Raman signature at 1213
cm−1) supports the hypothesis of a secondary calcium folate
precipitation besides the primary FA adsorption onto HA. In
this context, for high folate concentrations in solution, an
increased consumption of Ca2+ ions is expected so as to form
the calcium folate salt (evolution from left to right on eq 1). In
turn, this effect can favor the partial dissolution of apatite (in
order to preserve the solubility product), providing additional
calcium and phosphate ions to the solution. It may thus be
interesting to complement this study by the analysis of ionic
concentrations in the supernatants after adsorption process.
The case of calcium ions is however delicate as calcium is both
involved in the consumption with folate and in the release
from apatite; in contrast, it is appropriate to follow the
evolution of phosphates in solution as these ions will only be
linked to apatite dissolution. This follow-up has been done by
ICP-OES titrations of phosphorus, for several points over the

whole Ceq range of the isotherm presented in Figure 4a.
Although phosphate concentrations [P] remained rather low,
an increasing trend in the [P] = f(Qads) and the [P] = f(Ceq)
plots can be noticed (Figure SI2, Supporting Information),
roughly between 0.8 and 1.6 mg/L. This trend, evidencing an
increased HA dissolution upon adsorption, was indeed
expected on the basis of the above discussion.
This sorption overview now makes it possible to predict,

from a given FA concentration, which amount will be
associated with the solid phase and with which mechanism
of interactions. This is intended to prove helpful, for example,
in view of preparing apatite-based nanoparticles for applica-
tions in the field of oncology using FA as cancer cell targeting
agent. Moreover, a similar behavior may also be expected for
the adsorption of parent molecules such as antifolates like
methotrexate (MTX). In this regard, some selected adsorption
points for MTX on HA have also been recorded in this work
(corresponding to concentrations of MTX ranging throughout

Figure 6. Raman spectra for FA adsorbed on HA as well as pure FA and precipitated calcium folate. Adsorption points (1) and (2), respectively,
correspond to FA adsorbed amounts of 9.7 μmol/m2 (domain I) and 24.4 μmol/m2 (domain II)
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the adsorption isotherm, relevant for therapy) and they have
been added in Figure 4a. As expected, a reasonably good
accord may be indeed found with the FA isotherm, thus also
opening therapeutic perspectives.
In a parallel way, the same adsorption study as above has

been carried out on the FeHA iron-containing nanocrystalline
apatitic substrate. The corresponding FA adsorption isotherm
(at 37 °C) is reported on Figure 7. In this case, despite a

cloudiness in the data points, a simpler Qads = f(Ceq) curve
shape was identified when compared to HA, with a progressive
rather monotonous increase of Qads until stabilization.
Mathematical modeling of the plot showed that it could be

described−although not perfectly due to non-negligible error
bars, with the Langmuir model in a first approximation
(equivalent to Sips model with m = 1, leading to R2 ∼ 0.855)
as opposed to Freundlich (R2 ∼ 0.5941) or Temkin (R2 ∼
0.8346). The cloudiness of data points for FeHA may
reasonably be related to the heterogeneous nature of this
compound, associating apatite particles and maghemite
clusters. Nevertheless, in the case of FeHA a Langmuir-like
general form of the isotherm is noticed, without a clear change
in slope for increasing Ceq, unlike for HA. This indicates that
the formation of a secondary salt such as calcium folate, even if
present, cannot be directly detected. This may be related to the
physicochemical features of the FeHA substrate which exhibits
a lower surface area as well as a lower carbonation and a
composition closer to stoichiometry (larger Ca/P ratio)
compared to HA which is more carbonated, presents a larger
surface area and a composition farther from stoichiometry.
This implies that FeHA has a lower solubility compared to H
(the closer from stoichiometry, the more thermodynamically
stable (less soluble) as shown by a previous thermodynamic
dedicated study on biomimetic apatites59). Since the formation
of a calcium folate secondary salt would necessitate (partial)
apatite dissolution to provide Ca2+ ions, it is not surprising that
this phenomenon is less favored for FeHA, thus not provoking
a major perturbation on the adsorption isotherm. Although
this remark does not necessarily imply the absence of calcium
folate salt, it is expected to have less effect on the overall
adsorption process. The maximal FA adsorbable amount Qm

on FeHA is evaluated to be 6.02 ± 0.66 μmol/m2 from the
Langmuir fit. This value is, as expected by the less prominent
role of calcium folate, lower than that recorded on the HA
substrate in domain I (see Figure 4) and is likely explainable by
the affinity of the two nearly adjacent carboxylic end-groups
exhibited by FA for apatite. The Langmuir constant K was here
evaluated from the mathematical fit to be K ∼ 0.1792 ± 0.079
(for Ceq expressed in mmol/L). This value of the so-called
“affinity constant” is significantly greater than the one obtained
above for HA (K ∼ 0.03425 ± 0.0805), suggesting a greater
affinity of FA on FeHA than on HA. This difference is
probably assignable to the different physicochemical character-
istics of the two substrates: the less mature HA apatite
exhibiting a larger surface reactivity (and a greater potential for
postmaturation when reimmersed in solution) than the more
mature FeHA.
The concentration of phosphate ions present in the

supernatants upon adsorption was also measured, as previously
done for the HA substrate. In this case (Figure SI3, Supporting
Information), no clear trend in the [P] plot versus Qads (or
Ceq) was detectable, with [P] remaining close to 0.8 mmol/L
in all cases. These findings agree well with the above
conclusions suggesting the less significant role of calcium
folate in the adsorption of FA on FeHA in these experimental
conditions.
Raman spectra of FeHA powders were also tentatively

recorded. However, in this case portions rich in iron oxide led
to broad bands in the range 1150−1400 cm−1 which is a
specific domain of interest to examine the presence of calcium
folate salt (Figure SI4, Supporting Information). Therefore, the
Raman analysis of FeHA was not pursued for following the
adsorption process. It may only be noted that the most intense
band attributed to the ν1(PO4) mode of the apatite phase was
detected in FeHA substrate with a maximum at 958 cm−1,
which appears shifted in comparison to Fe-free apatite, as
shown in Figure SI5 (Supporting Information). This shift can
be attributed to the insertion of Fe ions in the apatitic
structure.
In conclusion of this section, the sorption of FA (or MTX)

on HA or FeHA has been investigated from a qualitative and
quantitative viewpoint. Adsorption appears to be guided by the
presence of the two carboxylate end-groups on the FA (or
MTX) molecule conferring some affinity for the surface of
nanocrystalline apatites, but the sorption process is probably
essentially of physical rather than chemical nature. The affinity
constant found on FeHA is greater than on HA. In addition,
the formation of a secondary calcium folate salt besides FA
sorption was evidenced especially on HA (which exhibits a
greater solubility and a larger surface area than FeHA). The
analysis of some MTX adsorption data points, relevant from a
medical viewpoint, showed that they fell close to those of FA,
thus allowing us to extrapolate the quantitative data from FA
(easily handled, nontoxic molecule), to MTX (chemo-
therapeutic, toxic drug).

3.3. Release Data. Release experiments were carried out
over 6 days, in HEPES at 37 °C and pH 7.4. Taking into
account the magnetization of FeHA and its potential role on
desorption activation as observed for DOX,30 release experi-
ments were performed both in the presence and in the absence
of external pulsed electromagnetic field (denoted PEMF).
Tests were carried out from samples preadsorbed with FA
using rather close initial loadings selected as follows: 136.65
mg/g (corresponding to 3.04 μmol/m2) for HA and 100.20

Figure 7. FA adsorption isotherm at 37 °C on iron-doped
nanocrystalline apatite sample FeHA, and fit with the Langmuir
model.
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mg/g (corresponding to 5.16 μmol/m2) for FeHA. These
values were chosen for being close to each other while limiting
also the effect of calcium folate secondary salt in the case of
HA. Our results indicated (Figure 8) that the application of an

external magnetic field did not have a detectable effect on FA
release. FA release from these apatitic substrates indeed does
not appear to be activated by additional vibratory motions
within the FeHA sample unlike previously revealed for DOX.30

In the latter case, interaction between DOX and FeHA
involved multimolecular assemblies (dimers, trimers or even
much larger polymolecular units) on the nanoparticles
surface,30 forming several layers of DOX molecules interacting
among them by π−π stacking thanks to their coplanar aromatic
molecular domains. In that case, when the FeHA-DOX
samples were exposed to a low-frequency PEMF, the
mechanical shacking of FeHA allowed the enhancement of
drug release at long time points (i.e., 3 and 6 days) since the
bonding among multimolecular assemblies as well as between
the drug and nanoparticles was weakened by the continuous
pulsed stimulation.30 In the case of FeHA-FA the same
phenomenon was not observed as no significant increase of FA
release was observed after 3 days. This might be related to the
fact that differently to DOX, the FA molecule cannot undergo
relatively weak π−π stacking interactions (absence of a large
planar molecular domain).
Generally speaking, the desorption of FA from both the

carriers was rather fast. In fact, release experiments at early
time points (Figure SI6) revealed that after the first 10 min
around 33 and 40 wt % FA were desorbed from FeHA and HA,
respectively, and after 30 min these values grew up to around
35 and 50 wt %. In both cases, the plateau was reached after 60
min, and corresponded to 38 and 55 wt % released FA for
FeHA and HA, respectively.
In all the cases, the amount of FA released was quite high,

and larger for HA (in the range 55−60 wt %) than for FeHA
(35−40 wt %). This difference is in perfect agreement with our
above results on the sorption of FA on each substrate, which
pointed out a significantly larger affinity of FA for FeHA than
on HA. However, the high released amounts observed by

simple reimmersion of the samples in HEPES buffer solutions
show that FA affinity for the surface of such apatites remains
rather low. Therefore, an eventual ion release from the apatite
surface simultaneous with the adsorption process itself (e.g.,
phosphate release from the apatite surface for “anchoring” the
adsorbed molecule) as already found for bisphosphonates28

can be ruled out here. This conclusion confirms that FA
sorption can most probably be described as a physisorption
phenomenon.
Additional experiments were focused on the desorption of

FA from the two substrates by immersion at 37 °C in NaCl 0.9
wt %, in the absence or presence of phosphate ions in the form
of KH2PO4 0.02 M. Figure SI7 (Supporting Information)
reports the results obtained for similar initial FA loading rates
of ca. 100 mg/g. As can be seen, desorbed amounts (in wt %)
are again larger from HA than from FeHA for any given
condition, which is in accordance with the above results
pointing to greater affinity of FA for FeHA than for HA. It can
also be noted that addition of phosphate ions in the medium
tends to favor FA desorption in the case of HA while it remains
almost unchanged for FeHA. Since the adsorption of FA on
HA was shown to be accompanied by the secondary formation
of calcium folate salt, the effect of an increase of phosphate
concentration in the medium can be explained by the
displacement of chemical equilibria: increasing phosphate
concentration will promote apatite formation versus its
dissolution, thus favoring in turn the dissolution of the calcium
folate salt in order to provide the necessary Ca2+ ions (eq 1
favored from right to left).
These desorption tests thus point out the possibility for

adsorbed FA (or MTX which was shown above to have a
similar adsorption behavior) to be desorbed upon reimmer-
sion, which may be exploited to convey antitumor effect to
such compounds. This can be especially expected in the case of
HA where the release is shown to be more significant.

3.4. In Vitro Tests. Assessment of osteosarcoma cells
viability grown in the presence of 5 and 50 μM MTX, either
free or loaded onto HA and FeHA, as well as with equivalent
amounts of unfunctionalized nanoparticles was carried out by
quantification of metabolically active cells by the use of the
MTT assay.
Results indicated that the MTX loaded onto HA, and

supplied to the cells at 50 μM of MTX, was able to exert a
cytotoxic activity on SAOS-2 cells (Figure 9a). As reported,
HA-MTX 50 μM showed reduction of cell viability compared
to the cells only sample, with statistic difference at 72 h of
culture, p ≤ 0.0001. Moreover, HA-MTX 50 μM significantly
reduced cell viability compared to both the tested concen-
trations of the unfunctionalized HA (HA Ct1 and HA Ct2 with
p ≤ 0.05 and p ≤ 0.0001, respectively). In contrast to HA, no
significant differences were observed in cell viability after
treatment with FeHA loaded with MTX at all the time points
(Figure 9b).
In order to obtain anticancer efficacy, MTX molecules must

be internalized into the cell with high concentration.60

However, MTX molecules themselves cannot easily permeate
through the cell membrane due to the repulsive interaction
between anionic MTX and negatively charged cell membrane
giving rise to a low drug efficacy.61 Moreover it is well reported
that MTX itself needs a lag-time to be effective because of its
very short half-life that results in a decrease of its concentration
in the initial period.60 Accordingly, our results indicate that
only the highest concentration of MTX tested is cytotoxic to

Figure 8. Kinetic of FA release from HA and FeHA from 1 to 6 days,
in the presence or absence of PEMF.
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the SAOS-2 cell type, and that this cytotoxicity shows up
significantly after 72 h of culture.
Previously published works have reported that MTX loaded

on layered double hydroxides60,61 and on mesoporous zinc-
hydroxyapatite functionalized with Pluronic F127 possess
higher antitumor efficacy on SAOS-2 respect to free MTX.62

Authors explained this behavior with the fact that MTX can
penetrate the tumor cell membrane without any early
decomposition through a nanostructure-mediated internal-
ization.
Overall, our data show that MTX supported on HA at the

highest concentration tested exerts cytotoxic effect. This is
however not observed with FeHA. The difference in
cytotoxicity between HA-MTX and FeHA-MTX can be due
to the higher MTX release from HA compared to FeHA and
not to different internalization processes that should be similar
as showed in our previous work with DOX.30

3.5. Substrate Biocompatibility Analysis via Subcuta-
neous Implantation in Mice. The materials studied in this
work could be envisioned for drug delivery, e.g., in bone tumor
sites, either in the form of slurries or as scaffolds. In order to
evaluate in an in vivo situation the general biocompatibility of
HA and FeHA, subcutaneous (intervertebral) implantations
were realized in mice. The samples were pelletized by uniaxial
pressing prior to implantation. After implantation (3 weeks), a
block resection of the implanted areas was performed for
histological analyses. The HA implanted samples had
disappeared almost completely while FeHA was still present.
These findings point out the more resorbable property of the
HA sample as compared to FeHA, which is in perfect
agreement with the above results suggesting a larger solubility
of HA. On resection, the remaining biomaterials separated
easily from the skin. Analysis of the skin tissue immediately in
contact with the materials was subjected to histomorphological
analyses. For FeHA, histology data indicated (Figure 10) that
the skin exhibited close to normal aspect. In the hypodermis, a

moderately abundant inflammatory infiltrate was detected,
associated with some polynuclear cells. Only rare giant
multinuclear cells were observed. Also, a fibroblastic reaction
and a loose collagen deposit were noticed. These findings
represent a natural healing process and do not show high
inflammatory or foreign-body reaction, evidencing a good
biocompatibility of the implanted material. For HA, similar
observations were made, only with a more abundant infiltrate,
often gathered in islands, and a more important fibroblastic
reaction associated with rather dense collagenic deposits in the
dermis and hypodermis. These observations (see also Figure
SI8, Supporting Information) are characteristic of the healing
process, especially activated due to the higher resorbability of
HA. Again, the results evidence a good biocompatibility of the
material and the absence of a high foreign-body reaction.

4. CONCLUSIONS

This study explored the interaction between FA or its
chemotherapeutic derivative, MTX, and bioinspired nano-
crystalline apatite substrates exhibiting, or not, superparamag-
netic properties. The sorption behaviors have been investigated
and explained on the basis of mathematical modeling of
experimental data. The two nanocrystalline apatite-based
compounds can be associated with FA/MTX in quantitative
amounts; however, a greater affinity of these molecules for
FeHA has been observed compared to HA. Consequently, a
larger propensity for drug release is found for HA which
proved to be effective on SAOS-2 sarcoma osteogenic cells.
The biocompatibility of the two substrates was also evidenced
by way of subcutaneous implantations in mice. By their
versatility in terms of drug affinities and release behaviors, but
also their nanocrystalline biomimetic character, these two
bioinspired apatite substrates are promising in the field of
oncology, whether using FA as cancer cell targeting agent and/
or using MTX to treat bone cancers.

Figure 9. Analysis of SAOS-2 cell line viability by the MTT assay,
after 24, 48, and 72 h of culture with 5 and 50 μMMTX either free or
loaded on (a) HA and (b) FeHA, as well as with equivalent amounts
of unfunctionalized (a) HA and (b) FeHA. The sample with only cells
was used as the control. The graph shows the average and standard
error of three replicates; statistical significant differences among the
samples are indicated in the graphs: *p ≤ 0.05, ***p ≤ 0.001, and
****p ≤ 0.0001.

Figure 10. Histological data (hematoxylin/eosin (HE) and Masson
trichrome stainings) after subcutaneous implantation (3 weeks) in
mice of HA and FeHA substrates.
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Figure SI1. Evolution of FA loading percentage versus initial contacted amount in solution 
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Figure SI2. Evolution of phosphate concentration in the supernatant after FA adsorption on 

nanocrystalline apatite HA 

 

 

 

 

0 1 2 3 4 5
0.4

0.8

1.2

1.6

2.0

[P
] 

(m
m

o
l 
P

/L
)

Q
ads

 (µmol FA/m²)

 

Figure SI3. Evolution of phosphate concentration in the supernatant after FA adsorption on 

iron-containing nanocrystalline apatite FeHA 
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Figure SI4. Raman spectra of FeHA (part rich in iron oxide) and calcium folate 
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Figure SI5. Raman spectral detail around the ν1(PO4) mode of the apatite phase in FeHA as 

compared to HA  
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Figure SI6. FA desorption kinetics at early time points on HA (a) and FeHA (b), in the 

presence or absence of external magnetic field (PEMF) 
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Figure SI7. Desorption tests at 37°C, at t = 1.5 h, in NaCl 0.9 wt.%, in the absence or 

presence (denoted “p”) of KH2PO4 0.02 M 
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Figure SI8. Histology data after implantation of HA and FeHA in mice (3 weeks). Both 

Hematoxyline-Eosine (HA) and Masson trichrome stainings are shown with small (x5) and 

larger (x10) views 

 



 

 

 

  



Table SI1. Experimental conditions for in vitro tests using MTX 

 

Samples 

MTX loaded on 

HA or FeHA 

(µg/mg) 

MTX µg/ml 

tested 

HA or FeHA 

µg/ml 

HA-MTX 50µM 101.8 22,7 228 

HA Ct1 - - 228 

HA-MTX 5µM 101.8 2,27 22,8 

HA Ct2 - - 22,8 

FeHA-MTX 50µM 99.6 22,7 223 

FeHA Ct1 - - 223 

FeHA-MTX 5µM 99.6 2,27 22,3 

FeHA Ct2 - - 22,3 

MTX 50µM - 22,7 - 

MTX 5µM - 2,27 - 

 

 


