60 research outputs found

    Renal amyloidosis revisited: amyloid distribution, dynamics and biochemical type

    Get PDF
    Background. Renal amyloidosis results from protein misfolding and leads to progressive renal insufficiency. Few data are available concerning the relevance of the histomorphological patterns and the dynamics of the disease process. Methods. Cases of renal amyloidosis in native kidney biopsies (n = 203) were retrospectively evaluated for the pattern of amyloid distribution, the extent of glomerular amyloid deposition and the amount of interstitial fibrosis and tubular atrophy. One hundred and fifty-eight cases were characterized by immunohistochemistry to determine the biochemical amyloid type. Morphological findings were correlated with available clinical data. Results. According to the predominant site of amyloid deposition, 84.6% showed a glomerular, 9.4% a vascular and 6% a tubulointerstitial distribution pattern. Within the glomeruli, amyloid was initially deposited in a focal segmental fashion that became diffuse and global in later stages. Most cases were identified as AL lambda (84/158) or AA (68/158). There was no correlation between the biochemical type and the distribution pattern. Serum creatinine correlated well with interstitial fibrosis and tubular atrophy and proteinuria with the glomerular amyloid load. Conclusions. The relevance of the different distribution patterns is unclear at the moment, but they may be due to the physicochemical properties of the amyloid fibrils in a given patient. This may become important in future anti-fibrillar therapie

    Rare extracranial localization of primary intracranial neoplasm

    Get PDF
    Meningioma, craniopharyngeoma and glioma are mainly intracranial lesions. Nevertheless, in rare cases these entities may occur solely as extracranial lesions that may present as intranasal/sinusoidal masses, with headaches and nasal obstruction. We present three cases of common intracranial tumors, with purely extracranial extension. The three described cases demonstrate, that preoperative MRI and CT imaging is important for differential diagnosis to exclude intracranial connections of the tumors. A definitive diagnosis requires specialized immunohistochemical examinations. In all cases of intranasal or pharyngeal neoplasm the diagnosis of meningioma, craniopharyngeoma and glioma should be considered as differential diagnosis to optimize the surgical procedure

    Histopathological patterns of nephrocalcinosis: a phosphate type can be distinguished from a calcium type

    Get PDF
    Background. The etiology of nephrocalcinosis is variable. In this study, we wanted to elucidate whether the histopathological appearance of calcium phosphate deposits provides information about possible etiology. Methods. Autopsy cases from the years 1988 to 2007 and native kidney biopsies from a 50-year period (1959-2008) with nephrocalcinosis were identified. The biopsy cases were re-evaluated by light microscopy. The autopsy cases were analysed according to the underlying disease. The biopsy cases were grouped with respect to the likely etiology of nephrocalcinosis. Total number, density, localization, size and pattern of all calcification foci were documented and correlated with clinical and laboratory data. Results. About 223 of 12 960 autopsy cases (1.7%) had nephrocalcinosis, 111 of which (49.8%) suffered from advanced malignant tumours. Nephrocalcinosis was the main diagnosis in 48 of 12 480 native kidney biopsies (0.4%). Clinicopathological correlation revealed a specific pattern of calcification associated with hyperphosphataemia and/or hyperphosphaturia: these cases showed predominant globular or shell-like calcifications (phosphate type). In contrast, the biopsies of the hypercalcaemic/hypercalciuric group had a different predominant pattern with clumpy or finely granular calcifications (calcium type). Conclusions. Our results indicate that hyperphosphaturia-associated cases of nephrocalcinosis can be distinguished from hypercalciuria-associated cases histopathologicall

    An Interdisciplinary Diagnostic Approach to Guide Therapy in C3 Glomerulopathy

    Get PDF
    Since the re-classification of membranoproliferative glomerulonephritis the new disease entity C3 glomerulopathy is diagnosed if C3 deposition is clearly dominant over immunoglobulins in immunohistochemistry or immunofluorescence. Although this new definition is more orientated at the pathophysiology as mediated by activity of the alternative complement pathway C3 glomerulopathy remains a heterogenous group of disorders. Genetic or autoimmune causes are associated in several but not in all patients with this disease. However, prognosis is poorly predictable, and clinicians cannot directly identify patients that might benefit from therapy. Moreover, therapy may range from supportive care alone, unspecific immune suppression, plasma treatment, or plasma exchange to complement inhibition. The current biopsy based diagnostic approaches sometimes combined with complement profiling are not sufficient to guide clinicians neither (i) whether to treat an individual patient, nor (ii) to choose the best therapy. With this perspective, we propose an interdisciplinary diagnostic approach, including detailed analysis of the kidney biopsy for morphological alterations and immunohistochemical staining, for genetic analyses of complement genes, complement activation patterning in plasma, and furthermore for applying novel approaches for convertase typing and complement profiling directly in renal tissue. Such a combined diagnostic approach was used here for a 42-year-old female patient with a novel mutation in the Factor H gene, C3 glomerulopathy and signs of chronic endothelial damage. We present here an approach that might in future help to guide therapy of renal diseases with relevant complement activation, especially since diverse new anti-complement agents are under clinical investigation

    Case report: Novel FHR2 variants in atypical Hemolytic Uremic Syndrome: A case study of a translational medicine approach in renal transplantation

    Get PDF
    Atypical hemolytic–uremic syndrome (aHUS) is a severe thrombotic microangiopathy in which kidney involvement is common. aHUS can be due to either genetic or acquired abnormalities, with most abnormalities affecting the alternative complement pathway. Several genetic factors/alterations can drive the clinical presentation, therapeutic response, and risk of recurrence, especially recurrence following kidney transplantation. We report here the case of a 22-year-old man who developed a severe form of aHUS. Renal biopsy revealed thrombotic microangiopathy and features of chronic renal damage. Despite two eculizumab infusions, the patient remained dialysis dependent. Two novel rare variants, c.109G>A (p.E37K) and c.159 C>A (p.Y53*), were identified in the factor H-related 2 ( FHR2 ) gene, and western blot analysis revealed a significant reduction in the level of FHR2 protein in the patient’s serum. Although FHR2 involvement in complement 3 glomerulopathy has been reported previously, a role for FRH2 as a complement modulator has not yet been definitively shown. In addition, no cases of aHUS in individuals with FHR2 variants have been reported. Given the role of FHRs in the complement system and the fact that this patient was a candidate for a kidney transplant, we studied the relevance of low FHR2 plasma levels through a set of functional in vitro assays. The aim of our work was to determine if low FHR2 plasma levels could influence complement control at the endothelial surface with a view to identifying a therapeutic approach tailored to this specific patient. Interestingly, we observed that low FHR2 levels in the patient’s serum could induce complement activation, as well as C5b–9 deposition on human endothelial cells, and affected cell morphology. As C5b–9 deposition is a prerequisite for endothelial cell damage, these results suggest that extremely low FHR2 plasma levels increase the risk of aHUS. Given their ability to reduce C5b–9 deposition, recombinant FHR2 and eculizumab were tested in vitro and found to inhibit hemolysis and endothelial cell surface damage. Both molecules showed effective and comparable profiles. Based on these results, the patient underwent a kidney transplant, and received eculizumab as induction and maintenance therapy. Five years after transplantation, the patient remains in good general health, with stable graft function and no evidence of disease recurrence. To our knowledge, this is first reported case of an aHUS patient carrying FHR2 mutations and provides an example of a translational therapeutic approach in kidney transplantation

    Case report: Early onset de novo FSGS in a child after kidney transplantation—a successful treatment

    Get PDF
    BackgroundEarly onset de novo focal segmental glomerular sclerosis (FSGS) in the kidney allograft in patients without FSGS in the native kidney is a rare disorder in children. It usually occurs mostly beyond the first year after kidney transplantation and often leads to graft loss. Standardized treatment protocols have not yet been established.Case descriptionWe describe a boy with early onset de novo FSGS in the transplanted kidney and non-selective glomerular proteinuria (maximum albumin-to-creatinine ratio of 3.8 g/g; normal range, ≤0.03 g/g creatinine). Manifestation occurred at 30 days posttransplant and was accompanied by a significant graft dysfunction (eGFR 61 ml/min per 1.73 m2). Treatment with 25 sessions of plasmapheresis over 14 weeks and three consecutive days of methylprednisolone pulse therapy (10 mg/kg per day) followed by oral prednisolone as rejection prophylaxis (3.73 mg/m2 per day) led to sustained remission of proteinuria (albumin-to-creatinine ratio of 0.028 g/g) and normalization of graft function (eGFR 92 ml/min per 1.73 m2) after 14 weeks. The follow-up period was 36 months.ConclusionsThis case underlines the efficacy of immunosuppressive and antibody eliminating therapy in early onset de novo FSGS after kidney transplantation

    Head and neck paragangliomas: clinical and molecular genetic classification

    Get PDF
    Head and neck paragangliomas are tumors arising from specialized neural crest cells. Prominent locations are the carotid body along with the vagal, jugular, and tympanic glomus. Head and neck paragangliomas are slowly growing tumors, with some carotid body tumors being reported to exist for many years as a painless lateral mass on the neck. Symptoms depend on the specific locations. In contrast to paraganglial tumors of the adrenals, abdomen and thorax, head and neck paragangliomas seldom release catecholamines and are hence rarely vasoactive. Petrous bone, jugular, and tympanic head and neck paragangliomas may cause hearing loss. The internationally accepted clinical classifications for carotid body tumors are based on the Shamblin Class I–III stages, which correspond to postoperative permanent side effects. For petrous-bone paragangliomas in the head and neck, the Fisch classification is used. Regarding the molecular genetics, head and neck paragangliomas have been associated with nine susceptibility genes: NF1, RET, VHL, SDHA, SDHB, SDHC, SDHD, SDHAF2 (SDH5), and TMEM127. Hereditary HNPs are mostly caused by mutations of the SDHD gene, but SDHB and SDHC mutations are not uncommon in such patients. Head and neck paragangliomas are rarely associated with mutations of VHL, RET, or NF1. The research on SDHA, SDHAF2 and TMEM127 is ongoing. Multiple head and neck paragangliomas are common in patients with SDHD mutations, while malignant head and neck paraganglioma is mostly seen in patients with SDHB mutations. The treatment of choice is surgical resection. Good postoperative results can be expected in carotid body tumors of Shamblin Class I and II, whereas operations on other carotid body tumors and other head and neck paragangliomas frequently result in deficits of the cranial nerves adjacent to the tumors. Slow growth and the tendency of hereditary head and neck paragangliomas to be multifocal may justify less aggressive treatment strategies

    Cholemic nephropathy causes acute kidney injury and is accompanied by loss of aquaporin 2 in collecting ducts

    Get PDF
    Impairment of renal function often occurs in patients with liver disease. Hepatorenal syndrome is a significant cause of acute kidney injury (AKI) in cirrhotic patients (HRS-AKI, type 1). Causes of non-HRS AKI include cholemic nephropathy (CN), a disease that is characterized by intratubular bile casts and tubular injury. As data on patients with CN is mostly obtained from case reports or autopsy studies, we aimed to investigate the frequency and clinical course of CN. We identified 149 patients who underwent kidney biopsy between 2000 to 2016 at the Department of Gastroenterology, Hepatology and Endocrinology. Of these, 79 had a history of liver disease and deterioration of renal function. When applying recent EASL criteria 45 of the 79 patients (57%) presented with AKI, whereas 34 patients (43%) had chronic kidney disease (CKD) (43%). Renal biopsy revealed the diagnosis of CN in 8 of the 45 patients with AKI (17.8%), whereas none of the patients with CKD was diagnosed with CN. Univariate analysis identified serum bilirubin, alkaline phosphatase and urinary bilirubin and urobilinogen as predictive factors for the diagnosis of CN. Histological analysis of AKI patients with normal bilirubin, elevated bilirubin and the diagnosis of CN revealed loss aquaporin 2 (AQP2) expression in collecting ducts in patients with elevated bilirubin and CN. Biopsy related complications requiring medical intervention occurred in four of 79 patients (5.1%). In conclusion, CN is a common finding in patients with liver disease, AKI and highly elevated bilirubin. Loss of AQP2 in AKI patients with elevated bilirubin and CN might be the result of toxic effects of cholestasis and be in part responsible for the impairment of renal function

    Expansion-enhanced super-resolution radial fluctuations enable nanoscale molecular profiling of pathology specimens

    Get PDF
    Expansion microscopy physically enlarges biological specimens to achieve nanoscale resolution using diffraction-limited microscopy systems1. However, optimal performance is usually reached using laser-based systems (for example, confocal microscopy), restricting its broad applicability in clinical pathology, as most centres have access only to light-emitting diode (LED)-based widefield systems. As a possible alternative, a computational method for image resolution enhancement, namely, super-resolution radial fluctuations (SRRF)2,3, has recently been developed. However, this method has not been explored in pathology specimens to date, because on its own, it does not achieve sufficient resolution for routine clinical use. Here, we report expansion-enhanced super-resolution radial fluctuations (ExSRRF), a simple, robust, scalable and accessible workflow that provides a resolution of up to 25 nm using LED-based widefield microscopy. ExSRRF enables molecular profiling of subcellular structures from archival formalin-fixed paraffin-embedded tissues in complex clinical and experimental specimens, including ischaemic, degenerative, neoplastic, genetic and immune-mediated disorders. Furthermore, as examples of its potential application to experimental and clinical pathology, we show that ExSRRF can be used to identify and quantify classical features of endoplasmic reticulum stress in the murine ischaemic kidney and diagnostic ultrastructural features in human kidney biopsies.</p
    corecore