69 research outputs found
The Perfect Finance Minister: Whom to Appoint as Finance Minister to Balance the Budget?
The role and influence of the finance minister within the cabinet are discussed with increasing prominence in the recent theoretical literature on the political economy of budget deficits. It is generally assumed that the spending ministers can raise their reputation purely with new or more extensive expenditure programs, whereas solely the finance minister is interested to balance the budget. Using a dynamic panel model to study the development of public deficits in the German states between 1960 and 2009, we identify several personal characteristics of the finance ministers that significantly influence budgetary performance. Namely her professional background seems to affect budget deficits. During times of fiscal stress, our results can guide prime ministers in the nominating of finance ministers in order to assure sound budgeting
Terrestrial laser scanning in forest inventories
AbstractDecision making on forest resources relies on the precise information that is collected using inventory. There are many different kinds of forest inventory techniques that can be applied depending on the goal, scale, resources and the required accuracy. Most of the forest inventories are based on field sample. Therefore, the accuracy of the forest inventories depends on the quality and quantity of the field sample. Conventionally, field sample has been measured using simple tools. When map is required, remote sensing materials are needed. Terrestrial laser scanning (TLS) provides a measurement technique that can acquire millimeter-level of detail from the surrounding area, which allows rapid, automatic and periodical estimates of many important forest inventory attributes. It is expected that TLS will be operationally used in forest inventories as soon as the appropriate software becomes available, best practices become known and general knowledge of these findings becomes more wide spread. Meanwhile, mobile laser scanning, personal laser scanning, and image-based point clouds became capable of capturing similar terrestrial point cloud data as TLS. This paper reviews the advances of applying TLS in forest inventories, discusses its properties with reference to other related techniques and discusses the future prospects of this technique
Virulence of Group A Streptococci Is Enhanced by Human Complement Inhibitors
Streptococcus pyogenes, also known as Group A Streptococcus (GAS), is an important human bacterial pathogen that can cause invasive infections. Once it colonizes its exclusively human host, GAS needs to surmount numerous innate immune defense mechanisms, including opsonization by complement and consequent phagocytosis. Several strains of GAS bind to human-specific complement inhibitors, C4b-binding protein (C4BP) and/or Factor H (FH), to curtail complement C3 (a critical opsonin) deposition. This results in diminished activation of phagocytes and clearance of GAS that may lead to the host being unable to limit the infection. Herein we describe the course of GAS infection in three human complement inhibitor transgenic (tg) mouse models that examined each inhibitor (human C4BP or FH) alone, or the two inhibitors together (C4BPxFH or 'double' tg). GAS infection with strains that bound C4BP and FH resulted in enhanced mortality in each of the three transgenic mouse models compared to infection in wild type mice. In addition, GAS manifested increased virulence in C4BPxFH mice: higher organism burdens and greater elevations of pro-inflammatory cytokines and they died earlier than single transgenic or wt controls. The effects of hu-C4BP and hu-FH were specific for GAS strains that bound these inhibitors because strains that did not bind the inhibitors showed reduced virulence in the 'double' tg mice compared to strains that did bind; mortality was also similar in wild-type and C4BPxFH mice infected by non-binding GAS. Our findings emphasize the importance of binding of complement inhibitors to GAS that results in impaired opsonization and phagocytic killing, which translates to enhanced virulence in a humanized whole animal model. This novel hu-C4BPxFH tg model may prove invaluable in studies of GAS pathogenesis and for developing vaccines and therapeutics that rely on human complement activation for efficacy
Is a Federal European Constitution for an Enlarged European Union Necessary? Some Preliminary Suggestions Using Public Choice Analysis
In order to guarantee a further successful functioning of the enlarged European Union a Federal European Constitution is proposed. Six basic elements of a future European federal constitution are developed: the European commission should be turned into an European government and the European legislation should consist of a two chamber system with full responsibility over all federal items. Three further key elements are the subsidiarity principle, federalism and the secession right, which are best suited to limiting the domain of the central European authority to which certain tasks are given, such as defense, foreign and environmental policy. Another important feature is direct democracy, which provides the possibility for European voters to participate actively in the political decision making, to break political and interest group cartels, and to prevent an unwanted shifting of responsibilities from EU member states to the European federal level
A transitioning Arctic surface energy budget: the impacts of solar zenith angle, surface albedo and cloud radiative forcing
Snow surface and sea-ice energy budgets were measured near 87.5°N during the Arctic Summer Cloud Ocean Study (ASCOS), from August to early September 2008. Surface temperature indicated four distinct temperature regimes, characterized by varying cloud, thermodynamic and solar properties. An initial warm, melt-season regime was interrupted by a 3-day cold regime where temperatures dropped from near zero to -7°C. Subsequently mean energy budget residuals remained small and near zero for 1 week until once again temperatures dropped rapidly and the energy budget residuals became negative. Energy budget transitions were dominated by the net radiative fluxes, largely controlled by the cloudiness. Variable heat, moisture and cloud distributions were associated with changing air-masses. Surface cloud radiative forcing, the net radiative effect of clouds on the surface relative to clear skies, is estimated. Shortwave cloud forcing ranged between -50 W m-2 and zero and varied significantly with surface albedo, solar zenith angle and cloud liquid water. Longwave cloud forcing was larger and generally ranged between 65 and 85 W m-2, except when the cloud fraction was tenuous or contained little liquid water; thus the net effect of the clouds was to warm the surface. Both cold periods occurred under tenuous, or altogether absent, low-level clouds containing little liquid water, effectively reducing the cloud greenhouse effect. Freeze-up progression was enhanced by a combination of increasing solar zenith angles and surface albedo, while inhibited by a large, positive surface cloud forcing until a new air-mass with considerably less cloudiness advected over the experiment area. © 2010 Springer-Verlag
An Arctic CCN-limited cloud-aerosol regime
On average, airborne aerosol particles cool the Earth's surface directly by absorbing and scattering sunlight and indirectly by influencing cloud reflectivity, life time, thickness or extent. Here we show that over the central Arctic Ocean, where there is frequently a lack of aerosol particles upon which clouds may form, a small increase in aerosol loading may enhance cloudiness thereby likely causing a climatologically significant warming at the ice-covered Arctic surface. Under these low concentration conditions cloud droplets grow to drizzle sizes and fall, even in the absence of collisions and coalescence, thereby diminishing cloud water. Evidence from a case study suggests that interactions between aerosol, clouds and precipitation could be responsible for attaining the observed low aerosol concentrations.ISSN:1680-7375ISSN:1680-736
Aerosols indirectly warm the Arctic
On average, airborne aerosol particles cool the Earth’s surface directly by absorbingand scattering sunlight and indirectly by influencing cloud reflectivity, life time, thicknessor extent. Here we show that over the central Arctic Ocean, where there is frequentlya lack of aerosol particles upon which clouds may form, a small increase in aerosol5loading may enhance cloudiness thereby likely causing a climatologically significantwarming at the ice-covered Arctic surface. Under these low concentration conditionscloud droplets grow to drizzle sizes and fall, even in the absence of collisions andcoalescence, thereby diminishing cloud water. Evidence from a case study suggeststhat interactions between aerosol, clouds and precipitation could be responsible for10attaining the observed low aerosol concentrations.ISSN:1680-7375ISSN:1680-736
Cell wall integrity modulates Arabidopsis thaliana cell cycle gene expression in a cytokinin- and nitrate reductase-dependent manner
During plant growth and defense, cell cycle activity needs to be coordinated with cell wall integrity. Little is known about how coordination is achieved. Here we investigated coordination in Arabidopsis thaliana seedlings by studying the impact of cell wall damage (CWD, caused by cellulose biosynthesis inhibition) on cytokinin homeostasis, cell cycle gene expression and shape in root tips. CWD inhibited cell cycle gene expression and increased transition zone cell width in an osmo-sensitive manner. These results were correlated with CWD-induced, osmo-sensitive changes in cytokinin homeostasis. Expression of CYTOKININ OXIDASE/DEHYDROGENASE2 and 3 (CKX2, CKX3), encoding cytokinin-degrading enzymes was induced by CWD and reduced by osmoticum treatment. In nitrate reductase1 nitrate reductase2 (nia1 nia2) seedlings, neither CKX2 and CKX3 transcript levels were increased nor cell cycle gene expression repressed by CWD. Moreover, established CWD-induced responses like jasmonic acid, salicylic acid and lignin production, were also absent, implying a central role of NIA1- and NIA2-mediated processes in regulation of CWD responses. These results suggest that CWD enhances cytokinin degradation rates through a NIA1 and NIA2-mediated process, subsequently attenuating cell cycle gene expression
- …