228 research outputs found

    Impact of Merger/Ringdown on SMBHB Parameter Estimation with LISA

    Get PDF
    The Laser Interferometer Space Antenna (LISA) will measure gravitational waves from the inspiral and merger of supermassive black hole bina ries (SMBHBs) at high redshift with large signal to noise. These meas urements will allow extraction of the SMBHB parameters (component mas ses, spins, binary orbital parameters, sky location, and distance) wi th exquisite accuracy. Here we present a study of the impact on measu red parameter precision from the inclusion of accurate waveforms for the merger/ringdown portion of the signal. we focus specifically on s ky-position and luminosity distance, the most important parameters fo r constraining searches for potential electromagnetic counterparts to SMBHB merger events

    LISA Long-Arm Interferometry

    Get PDF
    An overview of LISA Long-Arm Interferometry is presented. The contents include: 1) LISA Interferometry; 2) Constellation Design; 3) Telescope Design; 4) Constellation Acquisition; 5) Mechanisms; 6) Optical Bench Design; 7) Phase Measurement Subsystem; 8) Phasemeter Demonstration; 9) Time Delay Interferometry; 10) TDI Limitations; 11) Active Frequency Stabilization; 12) Spacecraft Level Stabilization; 13) Arm-Locking; and 14) Embarassment of Riches

    The LISA Data Challenge Radler Analysis and Time-dependent Ultra-compact Binary Catalogues

    Full text link
    Context. Galactic binaries account for the loudest combined continuous gravitational wave signal in the Laser Interferometer Space Antenna (LISA) band, which spans a frequency range of 0.1 mHz to 1 Hz. Aims. A superposition of low frequency Galactic and extragalactic signals and instrument noise comprise the LISA data stream. Resolving as many Galactic binary signals as possible and characterising the unresolved Galactic foreground noise after their subtraction from the data are a necessary step towards a global fit solution to the LISA data. Methods. We analyse a simulated gravitational wave time series of tens of millions of ultra-compact Galactic binaries hundreds of thousands of years from merger. This data set is called the Radler Galaxy and is part of the LISA Data challenges. We use a Markov Chain Monte Carlo search pipeline specifically designed to perform a global fit to the Galactic binaries and detector noise. Our analysis is performed for increasingly larger observation times of 1.5, 3, 6 and 12 months. Results. We show that after one year of observing, as many as ten thousand ultra-compact binary signals are individually resolvable. Ultra-compact binary catalogues corresponding to each observation time are presented. The Radler Galaxy is a training data set, with binary parameters for every signal in the data stream included. We compare our derived catalogues to the LISA Data challenge Radler catalogue to quantify the detection efficiency of the search pipeline. Included in the appendix is a more detailed analysis of two corner cases that provide insight into future improvements to our search pipeline

    Frequency-tunable Pre-stabilized Lasers for LISA via Sideband-locking

    Get PDF
    Laser frequency noise mitigation is one of the most challenging aspects of the LISA interferometric measurement system. The unstabilized frequency fluctuations must be suppressed by roughly twelve orders of magnitude in order to achieve stability sufficient for gravitational wave detection. This enormous suppression will be achieved through a combination of stabilization and common-mode rejection. The stabilization component will itself be achieved in two stages: pre-stabilization to a local optical cavity followed by arm-locking to some combination of the inter-spacecraft distances. In order for these two stabilization stages to work simultaneously, the lock-point of the pre-stabilization loop must be frequency tunable. The current baseline stabilization technique, locking to an optical cavity, does not provide tunability between cavity resonances, which are typically spaced by 100s of MHz. Here we present a modification to the traditional Pound-Drever-Hall cavity locking technique that allows the laser to be locked to a cavity resonance with an adjustable frequency offset. This technique requires no modifications to the optical cavity itself, thus preserving the stability of the frequency reference. We present measurements of the system performance and demonstrate that we can meet implement the first two stages of stabilization

    Optimal Design of Calibration Signals in Space Borne Gravitational Wave Detectors

    Get PDF
    Future space borne gravitational wave detectors will require a precise definition of calibration signals to ensure the achievement of their design sensitivity. The careful design of the test signals plays a key role in the correct understanding and characterization of these instruments. In that sense, methods achieving optimal experiment designs must be considered as complementary to the parameter estimation methods being used to determine the parameters describing the system. The relevance of experiment design is particularly significant for the LISA Pathfinder mission, which will spend most of its operation time performing experiments to characterize key technologies for future space borne gravitational wave observatories. Here we propose a framework to derive the optimal signals in terms of minimum parameter uncertainty to be injected to these instruments during its calibration phase. We compare our results with an alternative numerical algorithm which achieves an optimal input signal by iteratively improving an initial guess. We show agreement of both approaches when applied to the LISA Pathfinder case

    Patient emergency health-care use before hospital admission for COVID-19 and long-term outcomes in Scotland: a national cohort study

    Get PDF
    BackgroundIt is unclear what effect the pattern of health-care use before admission to hospital with COVID-19 (index admission) has on the long-term outcomes for patients. We sought to describe mortality and emergency readmission to hospital after discharge following the index admission (index discharge), and to assess associations between these outcomes and patterns of health-care use before such admissions.MethodsWe did a national, retrospective, complete cohort study by extracting data from several national databases and linking the databases for all adult patients admitted to hospital in Scotland with COVID-19. We used latent class trajectory modelling to identify distinct clusters of patients on the basis of their emergency admissions to hospital in the 2 years before the index admission. The primary outcomes were mortality and emergency readmission up to 1 year after index admission. We used multivariable regression models to explore associations between these outcomes and patient demographics, vaccination status, level of care received in hospital, and previous emergency hospital use.FindingsBetween March 1, 2020, and Oct 25, 2021, 33 580 patients were admitted to hospital with COVID-19 in Scotland. Overall, the Kaplan-Meier estimate of mortality within 1 year of index admission was 29·6% (95% CI 29·1-30·2). The cumulative incidence of emergency hospital readmission within 30 days of index discharge was 14·4% (95% CI 14·0-14·8), with the number increasing to 35·6% (34·9-36·3) patients at 1 year. Among the 33 580 patients, we identified four distinct patterns of previous emergency hospital use: no admissions (n=18 772 [55·9%]); minimal admissions (n=12 057 [35·9%]); recently high admissions (n=1931 [5·8%]), and persistently high admissions (n=820 [2·4%]). Patients with recently or persistently high admissions were older, more multimorbid, and more likely to have hospital-acquired COVID-19 than patients with no or minimal admissions. People in the minimal, recently high, and persistently high admissions groups had an increased risk of mortality and hospital readmission compared with those in the no admissions group. Compared with the no admissions group, mortality was highest in the recently high admissions group (post-hospital mortality HR 2·70 [95% CI 2·35-2·81]; pInterpretationLong-term mortality and readmission rates for patients hospitalised with COVID-19 were high; within 1 year, one in three patients had died and a third had been readmitted as an emergency. Patterns of hospital use before index admission were strongly predictive of mortality and readmission risk, independent of age, pre-existing comorbidities, and COVID-19 vaccination status. This increasingly precise identification of individuals at high risk of poor outcomes from COVID-19 will enable targeted support.FundingChief Scientist Office Scotland, UK National Institute for Health Research, and UK Research and Innovation

    Power and the durability of poverty: a critical exploration of the links between culture, marginality and chronic poverty

    Get PDF

    Interspecific comparisons of C\u3csub\u3e3\u3c/sub\u3e turfgrass for tennis use: I. Wear tolerance and carrying capacity under actual match play

    Get PDF
    Previous studies in the evaluation of wear tolerance have been conducted using wear simulators. Research to investigate wear tolerance of C3 turfgrasses under actual playing conditions and their carrying capacity is limited. Three grass tennis courts (replicates) maintained as official size (single) courts were constructed. Eight species and cultivars were randomized within the three courts (blocks): (1) ‘Keeneland’ Kentucky bluegrass (KB, Poa pratensis L.), (2) ‘Rubix’ KB, (3) ‘Villa’ velvet bentgrass (VBG, Agrostis canina L.), (4) ‘Puritan’ colonial bentgrass (CL, Agrostis capillaris L.), (5) ‘007’ creeping bentgrass (CB, Agrostis stolonifera L.), (6) fine fescue (FF, Festuca spp.) mixture, (7) ‘Karma’ perennial ryegrass (PR, Lolium perenne L.), and (8) ‘Wicked’ PR. Injury at the baseline was measured by counting healthy grass on four dates in 2017 and 2019 using an intersect grid. Carrying capacity at the baseline was derived as hours of play to sustain 90, 80, 70, and 60% grass cover. After 6 wk of actual tennis play involving \u3e120 participating players in 2017 and 2019, KB and PR were superior to other C3 turfgrass for wear tolerance and carrying capacity. These two species exhibited four times the carrying capacity of FF species and nearly 60% more carrying capacity than bentgrass (BG) species. Species of BG afforded higher shoot density and better traction than KB and PR, with VBG exhibiting the best traction, and FF and PR exhibiting the poorest traction. In 2017, greater cell wall content increased wear tolerance and carrying capacity. Velvet bentgrass was as good as KB and PR in overall wear tolerance and carrying capacity under actual match play

    Biomarkers of folate status in NHANES: a roundtable summary123456

    Get PDF
    A roundtable to discuss the measurement of folate status biomarkers in NHANES took place in July 2010. NHANES has measured serum folate since 1974 and red blood cell (RBC) folate since 1978 with the use of several different measurement procedures. Data on serum 5-methyltetrahydrofolate (5MTHF) and folic acid (FA) concentrations in persons aged ≥60 y are available in NHANES 1999–2002. The roundtable reviewed data that showed that folate concentrations from the Bio-Rad Quantaphase II procedure (Bio-Rad Laboratories, Hercules, CA; used in NHANES 1991–1994 and NHANES 1999–2006) were, on average, 29% lower for serum and 45% lower for RBC than were those from the microbiological assay (MA), which was used in NHANES 2007–2010. Roundtable experts agreed that these differences required a data adjustment for time-trend analyses. The roundtable reviewed the possible use of an isotope-dilution liquid chromatography–tandem mass spectrometry (LC-MS/MS) measurement procedure for future NHANES and agreed that the close agreement between the MA and LC-MS/MS results for serum folate supported conversion to the LC-MS/MS procedure. However, for RBC folate, the MA gave 25% higher concentrations than did the LC-MS/MS procedure. The roundtable agreed that the use of the LC-MS/MS procedure to measure RBC folate is premature at this time. The roundtable reviewed the reference materials available or under development at the National Institute of Standards and Technology and recognized the challenges related to, and the scientific need for, these materials. They noted the need for a commutability study for the available reference materials for serum 5MTHF and FA
    corecore