772 research outputs found

    The Host Galaxy and Central Engine of the Dwarf AGN POX 52

    Full text link
    We present new multi-wavelength observations of the dwarf Seyfert 1 galaxy POX 52 in order to investigate the properties of the host galaxy and the active nucleus, and to examine the mass of its black hole, previously estimated to be ~ 10^5 M_sun. Hubble Space Telescope ACS/HRC images show that the host galaxy has a dwarf elliptical morphology (M_I = -18.4 mag, Sersic index n = 4.3) with no detected disk component or spiral structure, confirming previous results from ground-based imaging. X-ray observations from both Chandra and XMM show strong (factor of 2) variability over timescales as short as 500 s, as well as a dramatic decrease in the absorbing column density over a 9 month period. We attribute this change to a partial covering absorber, with a 94% covering fraction and N_H = 58^{+8.4}_{-9.2} * 10^21 cm^-2, that moved out of the line of sight in between the XMM and Chandra observations. Combining these data with observations from the VLA, Spitzer, and archival data from 2MASS and GALEX, we examine the spectral energy distribution (SED) of the active nucleus. Its shape is broadly similar to typical radio-quiet quasar SEDs, despite the very low bolometric luminosity of L_bol = 1.3 * 10^43 ergs/s. Finally, we compare black hole mass estimators including methods based on X-ray variability, and optical scaling relations using the broad H-beta line width and AGN continuum luminosity, finding a range of black hole mass from all methods to be M_bh = (2.2-4.2) * 10^5 M_sun, with an Eddington ratio of L_bol/L_edd = 0.2-0.5.Comment: 19 pages, 16 figures, accepted for publication in Ap

    MACiE (Mechanism, Annotation and Classification in Enzymes): novel tools for searching catalytic mechanisms

    Get PDF
    MACiE (Mechanism, Annotation and Classification in Enzymes) is a database of enzyme reaction mechanisms, and is publicly available as a web-based data resource. This paper presents the first release of a web-based search tool to explore enzyme reaction mechanisms in MACiE. We also present Version 2 of MACiE, which doubles the dataset available (from Version 1). MACiE can be accessed fro

    Resonances in an evolving hole in the swash zone

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of American Society of Civil Engineers for personal use, not for redistribution. The definitive version was published in Journal of Waterway, Port, Coastal, and Ocean Engineering 138 (2012): 299–302, doi:10.1061/(ASCE)WW.1943-5460.0000136.Water oscillations observed in a 10-m diameter, 2-m deep hole excavated on the foreshore just above the low-tide line on an ocean beach are consistent with theory. When swashes first filled the initially circular hole on the rising tide, the dominant mode observed in the cross-shore velocity was consistent with a zero-order Bessel function solution (sloshing back and forth). As the tide rose and swash transported sediment, the hole diameter decreased, the water depth inside the hole remained approximately constant, and the frequency of the sloshing mode increased according to theory. About an hour after the swashes first reached the hole, it had evolved from a closed circle to a semi-circle, open to the ocean. When the hole was nearly semi-circular, the observed cross-shore velocity had two spectral peaks, one associated with the sloshing of a closed circle, the other associated with a quarter-wavelength mode in an open semi-circle, both consistent with theory. As the hole evolved further toward a fully semi-circular shape, the circular sloshing mode decreased, while the quarter-wavelength mode became dominant.The Office of Naval Research, a National Security Science and Engineering Faculty Fellowship, a National Science Foundation Career award, and a National Defense Science and Engineering Graduate Fellowship provided support

    Decadal changes in summertime reactive oxidized nitrogen and surface ozone over the Southeast United States

    Get PDF
    Widespread efforts to abate ozone (O3) smog have significantly reduced emissions of nitrogen oxides (NOx) over the past 2 decades in the Southeast US, a place heavily influenced by both anthropogenic and biogenic emissions. How reactive nitrogen speciation responds to the reduction in NOx emissions in this region remains to be elucidated. Here we exploit aircraft measurements from ICARTT (July–August 2004), SENEX (June–July 2013), and SEAC4RS (August–September 2013) and long-term ground measurement networks alongside a global chemistry–climate model to examine decadal changes in summertime reactive oxidized nitrogen (RON) and ozone over the Southeast US. We show that our model can reproduce the mean vertical profiles of major RON species and the total (NOy) in both 2004 and 2013. Among the major RON species, nitric acid (HNO3) is dominant (∼ 42–45%), followed by NOx (31%), total peroxy nitrates (ΣPNs; 14%), and total alkyl nitrates (ΣANs; 9–12%) on a regional scale. We find that most RON species, including NOx, ΣPNs, and HNO3, decline proportionally with decreasing NOx emissions in this region, leading to a similar decline in NOy. This linear response might be in part due to the nearly constant summertime supply of biogenic VOC emissions in this region. Our model captures the observed relative change in RON and surface ozone from 2004 to 2013. Model sensitivity tests indicate that further reductions of NOxemissions will lead to a continued decline in surface ozone and less frequent high-ozone events

    DNA Binding Polyamides and the Importance of DNA Recognition in their use as Gene-Specific and Antiviral Agents

    Get PDF
    There is a long history for the bioorganic and biomedical use of N-methyl-pyrrole-derived polyamides (PAs) that are higher homologs of natural products such as distamycin A and netropsin. This work has been pursued by many groups, with the Dervan and Sugiyama groups responsible for many breakthroughs. We have studied PAs since about 1999, partly in industry and partly in academia. Early in this program, we reported methods to control cellular uptake of polyamides in cancer cell lines and other cells likely to have multidrug resistance efflux pumps induced. We went on to discover antiviral polyamides active against HPV31, where SAR showed that a minimum binding size of about 10 bp of DNA was necessary for activity. Subsequently we discovered polyamides active against two additional high-risk HPVs, HPV16 and 18, a subset of which showed broad spectrum activity against HPV16, 18 and 31. Aspects of our results presented here are incompatible with reported DNA recognition rules. For example, molecules with the same cognate DNA recognition properties varied from active to inactive against HPVs. We have since pursued the mechanism of action of antiviral polyamides, and polyamides in general, with collaborators at NanoVir, the University of Missouri-St. Louis, and Georgia State University. We describe dramatic consequences of β-alanine positioning even in relatively small, 8-ring polyamides; these results contrast sharply with prior reports. This paper was originally presented by JKB as a Keynote Lecture in the 2nd International Conference on Medicinal Chemistry and Computer Aided Drug Design Conference in Las Vegas, NV, October 2013

    Statistics of the contact network in frictional and frictionless granular packings

    Get PDF
    Simulated granular packings with different particle friction coefficient mu are examined. The distribution of the particle-particle and particle-wall normal and tangential contact forces P(f) are computed and compared with existing experimental data. Here f equivalent to F/F-bar is the contact force F normalized by the average value F-bar. P(f) exhibits exponential-like decay at large forces, a plateau/peak near f = 1, with additional features at forces smaller than the average that depend on mu. Computations of the force-force spatial distribution function and the contact point radial distribution function indicate that correlations between forces are only weakly dependent on friction and decay rapidly beyond approximately three particle diameters. Distributions of the particle-particle contact angles show that the contact network is not isotropic and only weakly dependent on friction. High force-bearing structures, or force chains, do not play a dominant role in these three dimensional, unloaded packings.Comment: 11 pages, 13 figures, submitted to PR

    Mechanical design and development of TES bolometer detector arrays for the Advanced ACTPol experiment

    Full text link
    The next generation Advanced ACTPol (AdvACT) experiment is currently underway and will consist of four Transition Edge Sensor (TES) bolometer arrays, with three operating together, totaling ~5800 detectors on the sky. Building on experience gained with the ACTPol detector arrays, AdvACT will utilize various new technologies, including 150mm detector wafers equipped with multichroic pixels, allowing for a more densely packed focal plane. Each set of detectors includes a feedhorn array of stacked silicon wafers which form a spline profile leading to each pixel. This is then followed by a waveguide interface plate, detector wafer, back short cavity plate, and backshort cap. Each array is housed in a custom designed structure manufactured from high purity copper and then gold plated. In addition to the detector array assembly, the array package also encloses cryogenic readout electronics. We present the full mechanical design of the AdvACT high frequency (HF) detector array package along with a detailed look at the detector array stack assemblies. This experiment will also make use of extensive hardware and software previously developed for ACT, which will be modified to incorporate the new AdvACT instruments. Therefore, we discuss the integration of all AdvACT arrays with pre-existing ACTPol infrastructure.Comment: 9 pages, 5 figures, SPIE Astronomical Telescopes and Instrumentation conference proceeding

    Influence of soil minerals on chromium(VI) reduction by sulfide under anoxic conditions

    Get PDF
    The effects of soil minerals on chromate (Cr(VI)O(4)(2-), noted as Cr(VI)) reduction by sulfide were investigated in the pH range of 7.67 to 9.07 under the anoxic condition. The examined minerals included montmorillonite (Swy-2), illite (IMt-2), kaolinite (KGa-2), aluminum oxide (γ-Al(2)O(3)), titanium oxide (TiO(2), P-25, primarily anatase), and silica (SiO(2)). Based on their effects on Cr(VI) reduction, these minerals were categorized into three groups: (i) minerals catalyzing Cr(VI) reduction – illite; (ii) minerals with no effect – Al(2)O(3); and (iii) minerals inhibiting Cr(VI) reduction- kaolinite, montmorillonite, SiO(2 )and TiO(2 ). The catalysis of illite was attributed primarily to the low concentration of iron solubilized from the mineral, which could accelerate Cr(VI) reduction by shuttling electrons from sulfide to Cr(VI). Additionally, elemental sulfur produced as the primary product of sulfide oxidation could further catalyze Cr(VI) reduction in the heterogeneous system. Previous studies have shown that adsorption of sulfide onto elemental sulfur nanoparticles could greatly increase sulfide reactivity towards Cr(VI) reduction. Consequently, the observed rate constant, k(obs), increased with increasing amounts of both iron solubilized from illite and elemental sulfur produced during the reaction. The catalysis of iron, however, was found to be blocked by phenanthroline, a strong complexing agent for ferrous iron. In this case, the overall reaction rate at the initial stage of reaction was pseudo first order with respect to Cr(VI), i.e., the reaction kinetics was similar to that in the homogeneous system, because elemental sulfur exerted no effect at the initial stage prior to accumulation of elemental sulfur nanoparticles. In the suspension of kaolinite, which belonged to group (iii), an inhibitive effect to Cr(VI) reduction was observed and subsequently examined in more details. The inhibition was due to the sorption of elemental sulfur onto kaolinite, which reduced or completely eliminated the catalytic effect of elemental sulfur, depending on kaolinite concentration. This was consistent with the observation that the catalysis of externally added elemental sulfur (50 μM) on Cr(VI) reduction would disappear with a kaolinite concentration of more than 5.0 g/L. In kaolinite suspension, the overall reaction rate law was: -d[Cr(VI)]/dt = k(obs)[H(+)](2)[Cr(VI)][HS(-)](0.70
    corecore