Simulated granular packings with different particle friction coefficient mu
are examined. The distribution of the particle-particle and particle-wall
normal and tangential contact forces P(f) are computed and compared with
existing experimental data. Here f equivalent to F/F-bar is the contact force F
normalized by the average value F-bar. P(f) exhibits exponential-like decay at
large forces, a plateau/peak near f = 1, with additional features at forces
smaller than the average that depend on mu. Computations of the force-force
spatial distribution function and the contact point radial distribution
function indicate that correlations between forces are only weakly dependent on
friction and decay rapidly beyond approximately three particle diameters.
Distributions of the particle-particle contact angles show that the contact
network is not isotropic and only weakly dependent on friction. High
force-bearing structures, or force chains, do not play a dominant role in these
three dimensional, unloaded packings.Comment: 11 pages, 13 figures, submitted to PR