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DNA Binding Polyamides and the Importance of DNA Recognition in their 
use as Gene-Specific and Antiviral Agents
Kevin J Koeller¹, G Davis Harris¹, Karl Aston¹, Gaofei He¹, Carlos H Castaneda¹, Melissa A Thornton¹, Terri G Edwards², Shuo Wang³, 
Rupesh Nanjunda³, W David Wilson³*, Chris Fisher²* and James K Bashkin¹,²*

¹Department of Chemistry & Biochemistry, University of Missouri-St. Louis, St.Louis, MO 63121, USA
²NanoVir, LLC, Kalamazoo, MI 49008, USA
³Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA

Abstract
There is a long history for the bioorganic and biomedical use of N-methyl-pyrrole-derived polyamides (PAs) that 

are higher homologs of natural products such as distamycin A and netropsin. This work has been pursued by many 
groups, with the Dervan and Sugiyama groups responsible for many breakthroughs. We have studied PAs since about 
1999, partly in industry and partly in academia. Early in this program, we reported methods to control cellular uptake of 
polyamides in cancer cell lines and other cells likely to have multidrug resistance efflux pumps induced. We went on to 
discover antiviral polyamides active against HPV31, where SAR showed that a minimum binding size of about 10 bp of 
DNA was necessary for activity. Subsequently we discovered polyamides active against two additional high-risk HPVs, 
HPV16 and 18, a subset of which showed broad spectrum activity against HPV16, 18 and 31. Aspects of our results 
presented here are incompatible with reported DNA recognition rules. For example, molecules with the same cognate 
DNA recognition properties varied from active to inactive against HPVs. We have since pursued the mechanism of 
action of antiviral polyamides, and polyamides in general, with collaborators at NanoVir, the University of Missouri-St. 
Louis, and Georgia State University. We describe dramatic consequences of β-alanine positioning even in relatively 
small, 8-ring polyamides; these results contrast sharply with prior reports. This paper was originally presented by JKB 
as a Keynote Lecture in the 2nd International Conference on Medicinal Chemistry and Computer Aided Drug Design 
Conference in Las Vegas, NV, October 2013.
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Introduction
Polyamides (PAs) that recognize and bind the minor groove of 

DNA have been studied extensively by a number of groups, including 
those of  Dervan [1-3], Sugiyama [4-7], Lee [8-11], Laemmli [12-14], 
Kodadek [15,16] and others [17-19]. Over the course of that extensive 
work, a set of binding rules was developed primarily by the Dervan 
group to allow prediction and control of polyamide-DNA interactions 
in the minor groove [3,20-34].

We have been engaged in several collaborative N-methylpyrrole/
N-methylimidazole (Py/Im) polyamide projects over the years [35-42]. 
One project involved design of polyamides to repress cyclooxygenase-2 
(COX-2) gene expression by targeting the binding site of ETS (E26 
transformation specific) transcription control superfamily member 
Ets-1 in the COX-2 promoter, followed by study of the detailed 
thermodynamics of interactions between active PAs and their Ets-1 
target [37]. Another project discovered, and is developing, antiviral 
agents for high-risk, cancer-causing Human Papillomavirus (HPV), 
and also encompasses understanding the mechanism of action of these 
antiviral compounds [36,38,41]. During the course of these projects, 
we have made and studied the chemical, biological and biophysical 
properties of a number of polyamides of different sizes, from six 
to twenty-six heterocyclic rings. Especially for larger compounds, 
many of our results have not followed the reported rules of PA-DNA 
recognition, so we have pursued the DNA recognition properties of 
our compounds with chemical, biochemical and biophysical methods 
[35,37,39,43]. We found excellent antiviral efficacy in human cell and 
tissue culture with compounds exceeding MW of 3000 [36,38,41], 
and note that Sugiyama and colleagues have reported no difference in 
cellular uptake of polyamides from 400-4000 in MW, as long as Im 
content was kept constant [44].

Testing the effectiveness of polyamides against HPV16, 18 and 31 in 
cell culture led to some surprising findings, in addition to a number of 
inventions [41]. In that work, monolayers of  human keratinocytes and 
organotypic raft tissue cultures were used- both support maintenance 

of high-risk, cancer-causing HPV DNA, a circular, double-stranded 
molecule of about 8 kb. Levels of viral DNA in monolayer cultures 
were monitored 48 h after PA treatment using qPCR; viral DNA 
was measured relative to vehicle-treated controls in dose-dependent 
experiments with PAs that allowed calculation of IC50 values. The 
raft cultures were studied for much longer times (up to 19 days after 
PA treatment in published reports [41], and longer in unpublished 
studies at NanoVir). Of note, only relatively long polyamides showed 
antiviral activity, i.e. those compounds expected to bind approximately 
a full turn or more of DNA. In addition, only a subset of these long 
polyamides showed activity against HPV. Furthermore, there was a 
hierarchy of anti-HPV activity: more compounds were active against 
HPV31 than against HPV16, and more compounds were active against 
HPV16 than against HPV18. To date, all compounds active against 
HPV18 are active against both HPV16 and HPV31, and all compounds 
active against HPV16 are active against HPV31 [41]. Small chemical 
changes to PA structure caused huge differences in activity, even when 
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mode which we discuss below, and show in Figure 1) [72]. Here, we 
follow the literature naming conventions for PAs, where residues are 
referred to by their parent N-methylpyrrole and N-methylimidazole 
amino acid building blocks. Thus, dIm is the N-terminal des-amino-
N-methyl imidazole-2-carboxylic acid, Py is 4-amino-2-carboxy-N-
methyl pyrrole, Im is 4-amino-2-carboxy-N-methyl imidazole, γ is 
gamma-aminobutyric acid, which forms a hairpin turn for polyamides, 
Dp is dimethylaminopropylamine, NMe2CH2CH2CH2NH2, and Ta is 
bis(aminopropyl)N-methylamine, NMe(CH2CH2CH2NH2)2: 

NV1020: dIm-Py-Py-β-Py-Py-Py-γ(NH2)-Py-Py-Py-β-Py-Py-Py-β-Ta
NV1023: dIm-Py-Py-β-Py-Py-Py-γ-Py-Py Py-β-Py-Py-Py-β-Dp
NV1028: dIm-Py-Py-β-Py-Py-Py-γ-Py-Py-β-Py-Py-Py-Py-β-Ta
NV1030: dIm-Py-Py-β-Py-Py-Py-γ(NH2)-Py-Py-β-Py-Py-Py-Py-β-Ta 

In the case of amine tails Ta and Dp, we have found better anti-
HPV activity for Ta analogs much of the time, but there are a number 
of cases where the Dp analog is more active than its Ta counterpart, 
so there is no systematic preference for one amino tail over the other. 
A lack of preference was also found in the antiviral properties of PAs 
derived from γ and γ(NH2), as will be detailed elsewhere. NV1020, 
NV1023, NV1028 and NV1030 all recognize and bind identical DNA 
sites according to literature predictions (with W= A or T, the binding 
sites are either WGW7 or WWGW7, depending on which binding 
model one prefers) [24, 27]. However, the antiviral IC50 and IC90 values 
for these four compounds against HPV16, given in Table 1, fall into 
two dramatically different groups.

Interestingly, all compounds in Table 1 are relatively ineffectual 
against HPV18. For example, NV1028 has anIC50 of 0.7 μM and an 
IC90> 10 μM against HPV18, while NV1030 has an IC50 of 0.42 μM and 
an IC90> 10 μM against HPV18. Clearly, we wanted to understand the 
basis of these differences for such apparently degenerate PAs. 

In order to map the position of  NV1028 binding on HPV16 
and 18, we performed DNase I footprinting following by capillary 
electrophoresis (CE), and also carried out affinity cleavage/CE [28,49-
51] by attaching Fe(II) EDTA to the primary amine of the Ta group 
using literature methods to give NV1028-Fe (EDTA) [49,68]. A large 
study on the binding of NV1028 to HPV16 DNA is currently in press 
[73]. Using affinity cleavage, we identified fourteen binding sites for 
NV1028 in a section of the HPV18 including part of the LCR, spanning 
nucleotides 7647 to 157 of the circular, double-stranded DNA viral 
genome. The complete picture of PA-DNA binding is rather complex 
for discussion here, so we have provided a subset of data for two 
overlapping binding sites, a “forward” binding site with one mismatch 
and a “reverse” binding site with no mismatches (Figure 1A and B). By 
“forward orientation” we use the standard PA terminology where the 
N-C direction of the PA hairpin is oriented along the 5’-3’ direction of 
the DNA. For the reverse orientation, the N-C direction of the hairpin 
is oriented along the 3’-5’ direction of the DNA [74]. 

The dissociation constants for NV1028 at two HPV18 binding sites 
(1 and 2) are given in Table 2 and those same two binding sites are 
illustrated in Figure 1. The Kd values were determined by measuring the 

the nominal DNA recognition sites of the molecules were the same. 
Therefore, in order to determine the actual binding sites and affinities 
of the long, antiviral polyamides to wild-type HPV DNA sequences, we 
employed a variety of methods, including DNase I footprinting [45-
48], affinity cleavage (AC) [28,49,50] and capillary electrophoresis (CE) 
[29,43,45,51-54]. To carry out the footprinting, we studied a number of 
DNA molecules, about 300-523 base pairs (bp) in length, that are part 
of the AT-rich, approximately 8 thousand bp double-stranded DNA 
(dsDNA) genomes of HPV16 and 18 [38,55-62]. 

Because we observed unexpected effects of β-alanine (β) 
positioning on antiviral efficacy, and because we had also previously 
seen unexpected consequences of positional β effects [37,39,41,63], 
we decided to investigate these effects in more detail with biophysical 
studies. Solubility limitations prevented some experiments from being 
carried out on long polyamides, so we worked with smaller polyamides, 
a series of 6- and 8-ring molecules with their own inherent interest 
because they are directed to the COX-2 Ets-1 binding site [37,39]. Note 
that β is reported to be a good substitute for N-methylpyrrole building 
blocks, one that generally improves or maintains the binding constant 
between polyamide and DNA [63-70]. Furthermore, incorporation of 
β or a related “molecular spring” [66] is necessary when working with 
long polyamides, in order to keep good alignment between hydrogen 
bonding groups on polyamides with those in the minor groove of DNA. 
In this area of research, it is therefore common to refer to a polyamide 
as having eight “rings” even if one or more of those rings has been 
replaced with β.

Methods
Synthetic chemistry

Synthesis and purification of polyamides was carried out by 
literature methods [71]. Compounds were characterized by HPLC/ms 
(ESI+), HRMS, and 500 or 600 MHz 1H NMR, 13C NMR and 2-D NMR 
techniques [37,39-42].

Biosensor surface plasmon resonance (SPR)

Measurements were performed with Biacore T100 and T200 SPR 
sensor systems as described [39]. A biotinylated hairpin DNA was 
attached to sensor chips functionalized with streptavidin. The DNA had 
the sequence 5’-biotin-CCTTGGCTTCTTTTGAAGCCAAAGG-3’, 
where the bold, underlined region is the dsDNA recognition site for 
PAs KA1002, KA1007, and KA1055 and the italic T4 region forms the 
hairpin loop. DNA binding of PAs KA1063 and KA1065, and prior 
studies of KA1002 and KA1007, were described by a combination of 
orthogonal methods using several DNA targets; the methods included a 
novel fluorescence assay [40], SPR as described above and quantitative 
DNase I footprinting analyzed by CE [51], and these results were 
reported in concert with other colleagues [37]. 

Results
One striking result is the relative antiviral activity against HPV16 of 

four molecules which are isomeric or nearly isomeric. These molecules 
are NV1020, NV1023, NV1028, and NV1030 as shown below, with 
their different internal β positions in bold text. The only other difference 
between these four compounds is at the γ turn. Please note that with 
over 100 PA compounds tested against HPV16, 18 and 31, we have not 
seen any advantage or systematic effect of using the chiral γ turn (R)-
2,4-diaminobutyric acid, abbreviated as γ(NH2), in place of γ itself, even 
though the chiral reagent is reported to impart numerous beneficial 
properties on shorter PAs (including elimination of the reverse binding 

Table 1: IC50 and IC90 values against HPV16 are shown for nearly isomeric 
polyamides NV1020, NV1023, NV1028 and NV1030, all with the same putative 
DNA recognition motif.

Compound IC50 HPV16 (μM) IC90 HPV16 (μM) n (replicates)
NV1020 5 >>10 4
NV1023 5 10 2
NV1028 0.10 1.3 4
NV1030 0.13 1.3 4

http://dx.doi.org/10.4172/2161-0444.1000162


Medicinal chemistry
AlAmeri et al., Med chem 2012, 2:5

http://dx.doi.org/10.4172/2161-0444.1000125

Research Article Open Access

Med chem
ISSN: 2161-0444 Med chem, an open access journal

Volume 4(2): 338-344 (2014) - 340 

Citation: Koeller KJ, Davis Harris G, Aston K, He G, Castaneda CH, Thornton MA, et al. (2014) DNA Binding Polyamides and the Importance of DNA 
Recognition in their use as Gene-Specific and Antiviral Agents. Med chem 4: 338-344. doi:10.4172/2161-0444.1000162

protection of the DNA from DNase I digestion as a function of varying 
NV1028 concentration. To keep an appropriate DNA:PA ratio, the 
lowest DNA concentration used in the experiment was 200 pM, which 
is at least five times smaller than the smallest dissociation constant 
calculated [37,40,48,51,68,75-78]. 

Showing the top strand only, site #1 is 5’-AACTATAATA-3’, 
which is either a perfect match site for NV1028 with reverse binding, 
or a single mismatch site for NV1028 with forward binding; both 
possibilities are illustrated in Figure 1B. The perfect match, reverse 
orientation with the N-terminal Im at the 3’ end of the bottom DNA 
strand and C-terminal Py-γ at the 5’ end of the bottom DNA strand is 
further emphasized by Scheme 1: 

Ta--β--Py-Py-Py-Py--β--Py-Py
Im-Py-Py--β--Py-Py-Py

5’ -A-A-C-T-A-T-A-A-T-A-3’

3’-T-T-G-A-T-A-T-T-A-T-5’
Scheme 1

Site #2 is best described as a single mismatch site that is bound 
by NV1028 in the forward direction (Figure 1B). Thus, for site #2 we 
have 5’-AATATGACTA-3’, where the bold nucleotide indicates the 
mismatch (in this case, a Py/Py pair is matched with a GC base pair, 
causing a clash between the minor groove hydrogen bond donor from 
G and a ring CH, or amide hydrogen bond donor, associated with one 
of the Py groups). Sites 1 and 2 overlap and cannot likely be occupied 
by NV1028 simultaneously, but are occupied independently in the 
ensemble of DNA molecules present under experimental conditions. 

Affinity cleavage helps determine orientation of the PA bound 
to DNA and we used this approach to probe the orientations of the 
binding sites noted in Table 2 and Figure 1. The predicted forward and 
reverse PA binding sites for NV1028 are shown in Figure 1A. Affinity 
cleavage results for NV1028-Fe (EDTA) are shown in Figure 1B, along 
with PA orientations most consistent with those results. In affinity 
cleavage, hydroxyl radicals are generated by Fe(EDTA), a Fenton 
reagent, attached to the C-terminal Ta group of NV1028 through an 
amide bond. The radicals cleave DNA in a distance-dependent manner, 
and the different cleavage intensities reflect that distance dependence. 
The particular helical nature of DNA gives a familiar 3’ stagger to the 
cleavage patterns when cleavage occurs in the minor groove, which 

is the site of PA binding [79]. These comments help explain the 
appearance of Figure 1B.

In order to show the raw data used to generate both DNase I and 
affinity cleavage information by capillary electrophoresis, examples are 
given in Figure 2A-C.

To study the role of internal β residues in DNA recognition 
and binding thermodynamics, we turned to several series of smaller 
compounds that are more amenable to a number of thermodynamic 
techniques than the large, antiviral PAs. Some of these compounds are 
shown in Figure 3A-E. There are two parent compounds with all internal 
heterocycles, KA1002 and KA1063. Figure 3A shows KA1002, which 
has PA sequence dIm-Im-Py-Py-γ-Py-Im-Py-Py-β-Dp, and Figure 3D 

Figure 1: (A) Presumptive NV1028 Polyamide Match Site in the normal, 
forward binding mode and the corresponding reverse orientation; W = A or T. 
(B) DNA Sequence and affinity cleavage data (arrows) from a section (7770-
7805 bp) of the HPV18 Long Control Region bound to NV1028. The relative 
heights of the arrows indicate relative affinity cleavage intensities. In the PA 
diagrams, by convention, Im or dIm is a filled circle, Py is an open circle, β is 
a diamond, Ta is +), and the γ-turn is a curved line.

Site # Nucleotide span Kd (Langmuir) Kd (Hill) Hill Coefficient
1 7782 - 7791 2.2(5) nM 1.9(4) nM       1.7
2 7788 - 7797 2.4(8) nM 1.7(5) nM       2.0

Table 2: Dissociation constants from Langmuir and Hill models for NV1028 bound 
to a section of the HPV18 Long Control Region (LCR).
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Figure 2: Raw capillary electropherograms for DNAse I Footprinting and 
Affinity Cleavage with NV1028; the target DNA is the HPV18 LCR, nucleotides 
7766-7805. (A) Shows the control DNase I fragmentation (0 nM polyamide); 
(B) illustrates the region protected upon addition of 5 nM NV1028; C shows 
affinity cleavage where polyamide binds (the black bar above the sequence).
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shows KA1063 with PA sequence dIm-Py-Py-Py-γ-Py-Im-Im-Py-β-
Dp. In a series of KA1002 analogs, two compounds were made that 
replaced one or the other bold Py shown in Figure 3 with β. The first 
analog shown is KA1007, Figure 3B, where the bold pyrrole in the top 
strand of hairpin KA1002 was replaced with β, and the second analog 
is KA1055, shown in Figure 3C, where the bold red Py of KA1002’s 
bottom strand was replaced with β. For additional comparison of the 
positional effects of β on PA-DNA binding parameters, the bold, blue 
Py of KA1063 (Figure 3D) was replaced to give KA1065 (Figure 3E). 

In contrast to many literature reports [63-70], we found that the 
replacement of Py by β can have a significantly deleterious effect on 
PA-DNA binding. Figure 4 contains the relevant SPR data and global 
kinetic fits of that data. Thus, KA1002 binds DNA with a Kd of 0.3-
1.1 nM, depending on conditions (i.e. whether binding isotherms 
are obtained by fluorescence measurements of dye-labeled DNA 
in solution, by competition experiments for PA between labeled 
and unlabeled DNA [37,40] or by SPR at the solid-liquid interface 
[35,37,39]), but this weakens under those same experimental conditions 
(SPR, fluorescence or fluorescence competition [35,37,39]) to 35 - 83.4 

- 325 nM upon substituting just one Py of the top strand with β to 
give KA1007 (Figure 3) [37,39]. In contrast, substitution of a Py on 
the bottom strand with β, giving KA1055, barely alters Kd at all, with a 
measured value of 0.9 nM [39]. Similarly, the all heterocyclic KA1063 
has a Kd of 0.71 nM, but this increases to 70 or 106 nM, depending on 
measurement conditions, when a single Py is replaced with β to give 
KA1065 [35,37,39]. The reasons for these strong β effects could not be 
dissected into thermodynamic components ΔH and TΔS because of 
solubility limitations and aggregation of the polyamides in isothermal 
calorimetry experiments, but we hope that new molecular designs will 
overcome these difficulties. Different aggregation states at different 
concentrations are likely the cause of the variations in Kd measured 
by the various methods mentioned here. A slightly smaller, 6-ring PA 
proved sufficiently soluble to be amenable to complete and fruitful 
thermodynamic analyses [35,39]. 

Discussion
We have found that our long, antiviral polyamides are much more 

promiscuous at binding DNA than predicted by well-established rules 
of PA-DNA recognition. This promiscuity is based, we believe, on a 
large number of favorable enthalpic interactions such that one or more 
unfavorable interactions can be tolerated with no significant detriment 
to Kd. We have shown here that single base pair mismatches can still 
have Kd values in the single digit nM region, similar to perfect match 
sites. Data on double and triple mismatches have been submitted for 
publication. 

We should point out that the concept of “the binding constant to 
HPV16 or HPV18” has turned out to have no meaning, because we 
have discovered a large number of binding sites for various PAs on 
each HPV genome, essentially all with different binding constants, 
some with forward orientations, some with reverse orientations, some 
with orientations yet to be distinguished, and many with one or two 
mismatches. Furthermore, certain DNA sequences which we expected 
to bind particular PAs, e.g. NV1028, based on literature rules do not bind 
NV1028 at all. The details of these complex results will appear shortly 
for part of the HPV16 genome [73]. However, to date our results have 
covered about 50% of the HPV16 genome and about 20% of the HPV 

Figure 3: Compounds (A) KA1002; (B) KA1007; (C) KA1055; (D) KA1063; 
and (E) KA1065.

Figure 4:  SPR sensorgrams (color) and the global kinetics fits (black 
overlays) for the interaction of PAs (Figure 3) with the 5’-biotin labeled 
hairpin DNA sequence, 5’-biotin-CCTTGGCTTCTTTTGAAGCCAAGG-3’ [37, 
39]. The concentrations from bottom to top are: 1.5, 2, 2.5, 3, 5, 6, 9 nM for 
KA1002; 5, 10, 20, 40, 60 nM for KA1007; 2, 3, 4, 6, 8, 15 nM for KA1055; 1, 
2, 4, 6, 10, 15, 25 and 10, 20, 40, 100, 200, 400 nM for KA1063 and KA1065, 
respectively.
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18 genome with 1 – 4 polyamides, and the binding sites and affinities in 
those genomes do not yet show any clear preference or higher affinity 
for active vs. inactive PAs. Furthermore, antiviral activity does not 
correlate with the Kd values for PA-DNA binding events that we have 
characterized. In addition, we found poor correlation for reportedly 
degenerate aspects of PA sequences, such as β-alanine placement, with 
anti-HPV activity. 

We do not yet have a molecular-level picture of the specific in vivo 
impact on the negatively supercoiled HPV episome of a large number 
of  bound PA molecules, or how many PA molecules are bound per 
episome in a given cell. However, we started out to bind very specific 
viral DNA regions involved in replication and binding viral proteins 
and ended up with molecules able to bind many more sites on the 8 
kb viral genome than expected. It is certainly tempting to invoke this 
promiscuous binding as a partial explanation of the broad-spectrum 
anti-HPV activity discovered for a subset of active compounds [41]. 
We will soon be able to compare the binding patterns for NV1028 on 
HPV16 and HPV18 DNA over quite a wide range of their genomes, 
to see if this sheds light on the relatively poor anti-HPV18 activity for 
this compound and dramatically better anti-HPV18 activity for related 
compounds.

Although the Py for β exchange is reported in a great many cases 
to either improve or leave unchanged the Kd for PA-DNA interactions 
and to improve properties of intermolecular DNA alkylation efficiency 
by reactive PAs [63-70], we have found quite a number of cases where 
swapping β for Py is highly damaging to PA-DNA binding interactions. 
Most of these studies, whether our groups or by other groups, have been 
done on relatively similar, 6-8-ring polyamides. This set of seemingly 
contradictory results is certainly puzzling, and we don’t suggest that 
any prior results from other groups are incorrect. We instead conclude 
that it may not be possible yet to write completely general rules for 
PA-DNA recognition when β is involved. Why would this be the 
case? The β-alanine unit has a very different hydrophobic surface area 
and set of possible shapes than the PA heterocycles Py and Im, and β 
may be particularly sensitive to local changes in minor groove width 
and other DNA structural parameters that are (1) governed by DNA 
sequence context and (2) altered by complexes between DNA and 
minor groove-binders [80,81]. In fact, we have already begun to show 
such sequence context-driven effects to be important for PA-DNA 
recognition [39]. Therefore, although the small PAs we studied are 
quite far from our active antiviral compounds in molecular weight, 
there are definite parallels between 8 ring PAs and 14-ring or larger 
PAs in the currently unpredictable nature of  how Py/β substitutions 
affect biological and biochemical activities. We hope to expand the 
understanding of molecular recognition with polyamides so it reaches 
the levels we have begun to expect from the literature.

Conclusions
Recent work has discovered an entirely novel mechanism of 

action for polyamides as antiviral agents [36]. That work, largely 
by CF and TGE, used gene expression arrays, siRNA libraries and 
pharmacology to show how active antiviral polyamides elicit a DNA 
Damage Response (DDR) to destroy viral DNA when used to treat 
HPV-positive, precancerous cells [36]. No such response was triggered 
by inactive polyamides, nor was the equivalent DDR elicited in HPV-
negative cells or in cells having integrated HPV. Evidence was also 
found of HPV episomal DNA in multiple, unusual supercoiled states. 
These findings lead us to suggest that the interaction of polyamides 
with viral DNA sequences in the context of a small circular episome 
is the key to triggering events that ultimately result in viral DNA 
elimination. An important challenge now is to find the molecular 

and biophysical links between polyamide-DNA interactions (or 
other polyamide interactions) and activation of the DDR. We have 
established that the location of β-alanine building blocks can be much 
more complex than the literature led us to predict. These complications 
caused β depending on positioning of this aliphatic building block, and 
had large consequences for (a) the biophysical parameters of 8-ring 
polyamides binding to DNA [35,37,39,40] and (b) the ability of nearly 
identical 14-ring polyamides to show antiviral activity in human cell 
and tissue culture [36,38,41] against HPV16, 18 and 31.
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