7 research outputs found

    Rod constraints for simplified ragdolls

    Get PDF

    Frontiers in Precision Medicine IV: Artificial Intelligence, Assembling Large Cohorts, and the Population Data Revolution

    Get PDF
    Large cohort studies and more recently electronic medical records (EMR) are being used to collect massive amounts of genetic information. Implementation of artificial intelligence has become increasingly necessary to interpret this data with the goal of augmenting patient care. While it is impossible to predict what the future holds, policy makers are challenged to create guiding principles and responsibly roll out these new technologies. On March 22, 2019, the University of Utah hosted its fourth annual Precision Medicine Symposium focusing on artificial intelligence, assembling large cohorts, and the population data revolution. The symposium brought together experts in medicine, science, law and ethics to discuss and debate these emerging issues

    Devotions for Lent 2023 Hymns of Lent

    Get PDF
    This Lent, we will continue reflecting on hymns of faith, namely, some of our most beloved Lenten hymns. 10 such hymns have been chosen to fill the 40(+) days of Lent. Therefore, this devotional, different from previous editions, does not proceed on a weekly basis, but merely flows from one hymn to the next. Also different from previous editions, the devotional reflections are specifically based on the stanzas of the selected hymns. Therefore, each day’s reflection features the text of the hymn stanza, a devotion based on that stanza, a prayer, and then a Scripture passage or passages for further meditation. I pray these reflections may be of edification for you during this Lenten season.https://scholar.csl.edu/osp/1022/thumbnail.jp

    LSST Science Book, Version 2.0

    Get PDF
    A survey that can cover the sky in optical bands over wide fields to faint magnitudes with a fast cadence will enable many of the exciting science opportunities of the next decade. The Large Synoptic Survey Telescope (LSST) will have an effective aperture of 6.7 meters and an imaging camera with field of view of 9.6 deg^2, and will be devoted to a ten-year imaging survey over 20,000 deg^2 south of +15 deg. Each pointing will be imaged 2000 times with fifteen second exposures in six broad bands from 0.35 to 1.1 microns, to a total point-source depth of r~27.5. The LSST Science Book describes the basic parameters of the LSST hardware, software, and observing plans. The book discusses educational and outreach opportunities, then goes on to describe a broad range of science that LSST will revolutionize: mapping the inner and outer Solar System, stellar populations in the Milky Way and nearby galaxies, the structure of the Milky Way disk and halo and other objects in the Local Volume, transient and variable objects both at low and high redshift, and the properties of normal and active galaxies at low and high redshift. It then turns to far-field cosmological topics, exploring properties of supernovae to z~1, strong and weak lensing, the large-scale distribution of galaxies and baryon oscillations, and how these different probes may be combined to constrain cosmological models and the physics of dark energy.Comment: 596 pages. Also available at full resolution at http://www.lsst.org/lsst/sciboo

    Frontiers in Precision Medicine IV: Artificial Intelligence, Assembling Large Cohorts, and the Population Data Revolution

    Get PDF
    Large cohort studies and more recently electronic medical records (EMR) are being used to collect massive amounts of genetic information. Implementation of artificial intelligence has become increasingly necessary to interpret this data with the goal of augmenting patient care. While it is impossible to predict what the future holds, policy makers are challenged to create guiding principles and responsibly roll out these new technologies. On March 22, 2019, the University of Utah hosted its fourth annual Precision Medicine Symposium focusing on artificial intelligence, assembling large cohorts, and the population data revolution. The symposium brought together experts in medicine, science, law and ethics to discuss and debate these emerging issues

    A Spitzer survey of Deep Drilling Fields to be targeted by the Vera C. Rubin Observatory Legacy Survey of Space and Time

    No full text
    The Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST) will observe several Deep Drilling Fields (DDFs) to a greater depth and with a more rapid cadence than the main survey. In this paper, we describe the 'DeepDrill' survey, which used the Spitzer Space Telescope Infrared Array Camera (IRAC) to observe three of the four currently defined DDFs in two bands, centred on 3.6 and 4.5 μm. These observations expand the area that was covered by an earlier set of observations in these three fields by the Spitzer Extragalactic Representative Volume Survey (SERVS). The combined DeepDrill and SERVS data cover the footprints of the LSST DDFs in the Extended Chandra Deep Field-South (ECDFS) field, the ELAIS-S1 field (ES1), and the XMM-Large-Scale Structure Survey field (XMM-LSS). The observations reach an approximate 5σ point-source depth of 2 μJy (corresponding to an AB magnitude of 23.1; sufficient to detect a 1011 M⊙ galaxy out to z ≈ 5) in each of the two bands over a total area of ≈ 29 deg2. The dual-band catalogues contain a total of 2.35 million sources. In this paper, we describe the observations and data products from the survey, and an overview of the properties of galaxies in the survey. We compare the source counts to predictions from the Shark semi-analytic model of galaxy formation. We also identify a population of sources with extremely red ([3.6]-[4.5] >1.2) colours which we show mostly consists of highly obscured active galactic nuclei
    corecore