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Rod Constraints for Simplified Ragdolls

Chris Lewin†‡∗ Matt Thorman‡ Tom Waterson‡ Chris Williams† Phil Willis†

Centre for Digital Entertainment, University of Bath† Electronic Arts‡

Figure 1: 30 simplified ragdoll fall together into a complex, compact physics world.

Abstract

Physics-based animation has become a standard feature in mod-
ern games. Typically, the bones in a character’s animation rig are
each associated with a simulated rigid body, leading to a jointed as-
sembly commonly called aragdoll. The high density of animation
bones in the spine area can cause instability and performance issues,
so we are motivated to find a simplified physical representation for
this region.

We approximate the spine region of a ragdoll as an inextensible
elastic curve, building a circular arc constraint based on the Kirch-
hoff rod model. Our simplified spine shows improved performance
and stability over the standard group of socket joints, and proves
to be more controllable. To model general elastic rods we use soft
position constraints in place of forces, leading to a stable maximal
coordinate formulation of inextensible Kirchhoff rods.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation;

1 Introduction

While physics-based animation holds a place of increasing impor-
tance in games, several factors restrict its wider use. While any
performance cost can be quantified and accounted for, simulation
instability and a lack of controllability present unknown quantities
to game designers, who as a result are often tempted to reduce the
impact the simulation can have on gameplay. Improving stability is
thus an important goal if we wish to see wider adoption of physical
animation in the games industry.

Ragdoll simulation is one of the oldest uses of physics in games,
pre-dating even the widespread use of rigid body solvers [Jakobsen
2001]. Although multi-body systems research in academia often

∗clewin@ea.com

assumes the use of a reduced coordinatedynamics algorithmsuch
as Featherstone’s algorithm [Featherstone 1987], it is more com-
mon in games to use a constrained rigid body simulator such as
Bullet [Coumans 2005]. Thismaximal coordinateapproach has the
advantage of allowing characters to interact with other rigid bod-
ies with no extra effort, unlike reduced coordinate methods which
require additional constraints to link the two simulations together.
However, the sequential impulse-type solvers used by many game
physics engines converge slowly when faced with ragdoll assem-
blies, whose connectivity graphs have a deep tree topology. Be-
cause game engines typically use a fixed number of iterations, this
slow convergence manifests as residual joint errors and jittering.

The simplest remedy for this situation is to decrease the number
of bones in the animation rig. However, this is usually not viable
because authored animation needs large numbers of bones in certain
areas to be expressive. We could take smaller timesteps or use more
solver iterations, but this has a severe performance impact. If we
want to have both expressive animation and simple ragdolls, we
need to break the isomorphism between the physics and animation
skeletons.

To this end, we define asimplifiedragdoll as one that does not have
a 1:1 mapping between animation bones and physics bodies. The
goal then becomes to findsimplified regions: areas of the skeleton
in which there is a simple approximation to the underlying kine-
matics. The results of the simple simulation are then interpolated
back to the associated animation bones. The spine region is a good
candidate for simplification because the underlying kinematics of
the spine are similar to those of an inextensible rod. We can capture
these dynamics by building an inextensiblerod constraint.

2 Related Work

Simulation of elastic rods is a popular field, so we will only cover
the most closely related work here. The reader is referred to the
recent survey paper [Ward et al. 2007] for a more comprehensive



Figure 2: Comparison between a standard ragdoll with three joints
in the spine (left) and a simplified ragdoll with a single rod con-
straint (right), both slumping forward under gravity.

view of the field as it pertains to computer graphics. Maximal coor-
dinate methods based on mass-spring networks [Selle et al. 2008]
and shape matching [Rungjiratananon et al. 2012] can be very fast
and can capture bending and twisting dynamics effectively, but have
difficulty preserving length.

Other researchers adopt reduced coordinate approaches. Bergou
et al. [2008] perform a comprehensive discretisation of Langer and
Singers work [1996] on Kirchhoff rods, allowing them to accurately
simulate instability phenomena such as the buckling of elastic rings.
Bertails et al. [2006] use helical elements of constant curvature and
torsion to model curled hair wisps. Chains of rigid bodies [Hadap
and Magnenat-Thalmann 2001] have also been used effectively.
Methods that use the control points of spline curves as reduced co-
ordinates [Remion et al. 1999; Nocent and Remion 2001] have been
used to accurately model rod-like mechanical parts [Theetten et al.
2008] as well as knitted cloth [Kaldor et al. 2008]. Discounting
collision detection, these methods are not overly expensive. How-
ever, for reasons discussed previously we prefer not to use reduced
coordinate methods.

There is little academic work on ragdoll construction. Techniques
which synthesize motion at runtime such as [Yin et al. 2007] have
no need to interpolate from (and extrapolate back to) an authored
animation skeleton, and thus can use ragdolls that are as simple as
possible. However, much work has been done on alternative joint
representations for inverse kinematics. Lee and Terzopolous [2008]
developed a joint model based on spline surfaces, with the spline
parameters as the reduced coordinates of the simulation. This
method allowed them to model complex joints, although it would
be prohibitively expensive to use in a maximal coordinate setting.
Engell et al. [2012] proposed a data-driven approach based on dis-
tance fields in angle-space, allowing them to model the complex
constraint manifold of the shoulder joint with constant-time con-
straint projections, at the cost of a large memory footprint.

3 Contributions

We show how to model inextensible elastic rods as constraints be-
tween rigid body pairs. We define the rods shape implicitly by the
position and orientation of the two bodies, imposing an additional
constraint to ensure the resulting shape is convenient - that of a cir-
cular arc. We emulate the bending and twisting forces using soft
constraints, allowing stiff rods to be stable even when using long
timesteps.

{γ(0),F(0)}
{γ(1),F(1)}

γ(s)

F (s)

Figure 3: Adapted framed curve between rigid bodies.

We improve the convergence behaviour of character ragdolls by re-
placing the many joints in the spine region with our rod constraint.
This leads to significantly reduced joint violation when using a
fixed number of iterations, as well as improved controllability.

4 Background

We adopt the uniform variation of the Kirchhoff elastic rod
model [Langer and Singer 1996], which describes a rodΓ as a
centerline curveγ(s) and an orthonormal material frameF (s) =
{t(s),m1(s),m2(s)}, representing the rotation of the rod’s cross-
section about the centerline. The material frame is calledadapted
becauset is tangent to the centerline:t(s) = γ(s)′ = d

ds
γ(s).

Because we assume inextensibilitys ∈ [0, 1] must be an arc length
parameterisation, and|t(s)| ≡ 1.

The elastic energy of the rod is related to the bending and twisting
strains:

E(Γ) =
1

2

∫
kbκ

2 ds +
1

2

∫
ktτ

2 ds, (1)

whereκ = |t′| is the bending strain orcurvatureof the centerline
andτ is the twisting strain, which is the angle between the material
frame and thenatural frameof the centerline. The natural frame
is one of many possible framings of a space curve, with the distin-
guishing factor that it has no inherent twist. Because we assume the
rod is inextensible, there is no stretching component to the energy.

While a full discussion of rigid body physics is beyond the scope of
this paper (see [Bender et al. 2012] for a recent survey), we should
still make some notation clear. We consider a rigid bodyi to be an
oriented particle with coordinatesxi = {pi,qi}, wherepi is the
position of its center of mass andqi is a quaternion representing
its orientation. Each body is equipped with a massmi and inertia
Ii. We use an impulse-based method [Bender and Schmitt 2006],
solving the system from a set of preview coordinatesx∗. We deal
with collision detection and contact resolution in standard ways,
and as they are orthogonal to the purpose of this paper we will not
discuss them here.

5 Our Method

To build a rod constraint between the rigid bodiesxa andxb, we
need the ingredients of a rod in the Kirchhoff model: a vector-
valued curve functionγ(s,xa,xb) and a quaternion-valued mate-
rial frame functionF(s,xa,xb). We specify that each end of the
rod is attached to a rigid body at its center of mass (Figure 3):

γ(0) = pa, γ(1) = pb,

F(0) = qaF
bod
a ,F(1) = qbF

bod
b ,

(2)

whereFbod
i is the orientation of the rod in bodyi’s local space. The

body tangentsti andbody normalsni are then defined as directions
in Fbod

i .

Given a specific form for the curveγ(s), we can constrain its length
and find soft constraint equivalents of the bending and twisting
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Figure 4: Visualisation of the arc constraint. The angleθ between
the tangents’ rejections ontôo (t̃a and t̃b) must be equal toπ, and
the anglesφa andφb must be equal and opposite.

forces. Our constraint equations are scalar or vector functions of
the coordinates of rigid body pairsC(xa,xb) that are equal to zero
when the constraint is satisfied.

5.1 Length constraint

To constrain the length of the curveγ(s), we need to compare its
arc length to the length of the undeformed rodl0:

Clen(xa,xb) =

∫ 1

0

|γ′(s,xa,xb)| ds − l0. (3)

To enforce this constraint we need to be able to calculate the arc
length of γ, which in general is a hard problem. While we can
numerically obtain an arc length parameterisation for any curve,
the amount of computation required would render the constraint
unsuitable for realtime use. This problem must inform our choice
of γ.

5.2 Elastic constraints

Instead of using forces to simulate the bending and twisting be-
haviour of the rod, we will use soft constraints. This is a technique
used to great effect in the field ofposition-based dynamics[Müller
et al. 2007]. The major advantage over force-based methods is guar-
anteed stability: increasing the strength of the constraint will not
create numerical stiffness. To use this technique we take the energy
terms as constraint equations:

Cbend(xa,xb) =
1

2
αb

∫ 1

0

κ2 ds, (4)

Ctwist(xa,xb) =
1

2
αt

∫ 1

0

τ2 ds. (5)

Note that instead of bending and twisting stiffnesseskb andkt we
use equivalent relaxation factorsαb andαt. In position-based dy-
namics we make this substitution because our constraints will be
solved as velocity updates rather than forces. True stiffness con-
stants have a range of 0 (completely soft) to infinity (completely
rigid). Using specific relaxation factors rescales this range from 0
to 1.

ψ

ψ/2 ψ/2

rk = l0
ψ

ck

l0

l(ψ) = 2l0
sin(ψ/2)

ψ

Figure 5: Circular arc in the plane of curvature. Assuming the rod
is the correct lengthl0, the length of the offsetl can be determined
as a function ofψ.

The major disadvantage of this approach is a loss of physical real-
ism. In particular, using soft constraints will cause damping of the
resulting oscillations. For games this is not a big problem, as stabil-
ity is valued over physical realism. Another issue encountered by
Müller et al. [2007] is that it is difficult to estimate the effect of a
given specific relaxation when compounded over many sequential
iterations. In their case they were able to find a suitable rescaling,
but for more complex constraints this may not be possible.

5.3 Choice of curve

Note that we have left the curve functionγ(s,xa,xb) undefined.
The expressiveness and efficiency of this constraint hinge strongly
on our choice of curve type. We require a curve that is fully deter-
mined by the body positions and frames, and which has an easily-
calculated arc length. One might consider following Theetten et
al. [2008] and using a cubic spline curve to formγ. This passes the
first test but fails the second, as expressions for the arc length of
cubic splines are complex.

We thus instead follow Bertails et al. [2006] and choose to restrict
our curves to those with easily-obtainable expressions for arclength,
curvature and torsion. While they chose helical segments, which
have constant curvature and constant Frenet torsion, we choose cir-
cular arcs, which have constant curvature and zero torsion. This
choice satisfies the second condition, but poses some problems for
the first. While a unique cubic Hermite spline exists for any set of
coordinatesxa andxb, this is not true for circular arcs. We need
to include an additional constraint on the two bodies that will force
them into an admissible configuration - one in which we can draw
a valid circular arc between them.

5.4 Curve constraint

To constrain a rigid body pair such that they have an adjoining cir-
cular arc, we need to find sufficient conditions on the positions and
orientations of the bodies at each end of the curve. We do this by
inspecting a valid arc (Figure 4). We note thatta, tb andô must all
lie in the same plane, which means that the angleθ must be equal
to π. We also note that the anglesφa andφb must be equal and op-
posite. Effectively, these conditions require thattb be thereflection
of ta aboutô, and we can encode this using a similar equation to
specular reflection about a surface normal:

Ccurve(xa,xb) = ta + tb − 2(ta ∙ ô)ô. (6)



r

a

b

l

Figure 6: Comparison of the kinematics of chains of ball and socket
joints and a single rod constraint. If each joint in a chain makes the
same angle (chaina), then the locus of points the end of the chain
can achieve (curvel) is similar to that of the rod constraint (curve
r). If this is not true (chainb) then the assumption breaks down.

5.5 Specific form of length and elastic constraints

When this constraint is satisfied we can look at the bodies’ configu-
ration in the plane of curvature (Figure 5) to find simple expressions
for the length preservation and elastic constraints. We can define
γ(s) as a sweep about the center of curvatureck from pa to pb:

γ(s,xa,xb) = ck + r̃(s)(pa − ck), (7)

wherer̃(s) is the matrix form of an axis-angle rotation about the
plane normal:

r(s,xa,xb) = ψsn̂, (8)

whereψ(xa,xb) = arccos(ta ∙ tb) is the curve bending angle.
We take the approach of correcting the length purely through linear
motion along the offset axis; thus assuming a fixed bend angleψ
we can derive the correct length of the offset for a given rest length
l0:

Clen(xa,xb) = |pb − pa| − 2l0
sin(ψ/2)

ψ
. (9)

With this constraint satisfied, we notice the radius of curvaturerk =
|ck − pa| = l0/ψ. Thus the curvature is constant over the rod:

κ =
1

rk
=

ψ

l0
, (10)

and the bending constraint is

Cbend(xa,xb) =
αbψ

2

2l20
. (11)

We recall that the twistτ is the angle between the natural and ma-
terial frames. We know the material frames at the beginning and
end of the circular arc:F(0) = qaF

bod
a , F(1) = qbF

bod
b . Thus

we can find the total angle between the two frames and subtract the
bending angle, leaving us with the twisting angle:

τ = ξ − ψ, (12)

whereξ is the total angle between the quaternionsF(0) andF(1).
The twisting constraint is thus:

Ctwist(xa,xb) =
αtτ

2

2
. (13)

6 Ragdoll Considerations

Although our rod constraint has a range of motion similar to a group
of ball and socket joints, the two are not interchangeable. Specif-
ically, if the internal angles of the ball and socket chain are very
different to one another then the end of the chain can take very dif-
ferent positions to the end of the rod constraint (Figure 6). The rod
approximation is thus closest to being valid when there are a large
number of joints in the chain, and the internal angles are all the
same. Fortunately, this is usually close to the truth in animations
authored for games.

However, most animations do deviate by some amount from this
ideal state. A very important case to consider for ragdolls is that a
character is initially animated kinematically, and some action from
the player causes it to transition to a ragdoll. This means we need
to allow any configuration of the ragdoll given to us by a source
animation. We can deal with this by instantiating the rod only when
the transition occurs, setting its rest length and body frames such
that the new constraint is valid.

Finally, we need to interpolate the results of the simplified simu-
lation back to intermediate animation bones that do not have asso-
ciated physics bodies. We can do this by linearly interpolating the
position or orientation changes of the rigid body at the top of the
spine, sharing them out between the animation bones. If we use
the orientation changes only, the bone lengths will be conserved
but the end of the chain of animation bones will end up in a dif-
ferent position to the rigid body (this effect gets worse if the spine
is severely kinked). If we also interpolate the position changes, the
bone lengths will not be conserved but the positions will match. We
have found using orientations only tends to produce fewer artifacts
in practice.

7 Implementation

Although our rod model consists of several constraint equations,
none of these are particularly useful individually. By solving all the
constraints together in one function, we can share some calculations
common to each and end up doing less work overall. The code
accompanying this paper includes a sample implementation of the
rod constraint.

Our solver and constraint functions are implemented in our physics
engine as branch-free SIMD code, solving four constraints at once.
It takes on average 60 ns to solve one rod joint on a 2.4GHz Intel
Xeon CPU, while the equivalent ball and socket joint takes 20ns
on average. We thus break even on efficiency if we replace three
ball and socket joints with a single rod. Because typical animation
rigs for human characters use four joints between the hips and up-
per spine, this translates to a slight performance improvement in
practice. This does not tell the whole story, however: if the num-
ber of iterations we use was kept artificially high by the complexity
of our ragdolls, then simplifying them will remove a performance
bottleneck by allowing us to use fewer iterations.

8 Results

Because game physics engines typically use a fixed number of iter-
ations, slow convergence of the constraint solver manifests as resid-
ual error at the end of each frame. It thus makes sense to look at
this metric when comparing methods. Figure 8 shows that there is
a dramatic improvement in residual error between a standard and
simplified ragdoll in a passive bending scene, and a smaller but still
consistently positive difference in a more natural scene that includes
collisions.
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Figure 7: Comparison of controllability between a ragdoll with
three joints in the spine (left) and a single rod constraint (right).
With the hips fixed, the characters try to maintain their initial pose
in the face of an external force.

This improvement in convergence speed is particularly important
when we try to control the ragdoll. In methods such as PD control,
the kinematic depth of the ragdoll has a major effect on the ability
of a character to follow a target animation. As a crude metric for
controllability, we can look at each ragdoll’s ability to maintain a
target pose using internal torque constraints in the face of external
forces. Figure 7 shows each type of ragdoll’s response to such a
force. Even though the constraints driving the ragdoll to the target
pose have infinite strength, the large number of joints in the spine
causes the left ragdoll to converge to the target pose very slowly, re-
sulting in a noticeable deviation after 20 solver iterations. Reducing
the number of joints in the spine allows forces to propagate through
the bottom ragdoll in fewer iterations, leading to a greater ability to
maintain the target pose.

It should be noted that our ball and socket joints are solved using
simplified methods that are cheap but converge slowly, and thus
the error behaviour is not directly comparable to other published
methods that are more accurate. However, our implementation of
the rod constraint also uses cheap approximations. It should always
be possible to get significant benefits from reducing the number
of joints in the spine if one replaces a group of ball and socket
constraints with a single similarly accurate rod constraint.

It should also be mentioned that one could achieve the same im-
provements in convergence behaviour by simply reducing the num-
ber of ball and socket joints in the spine to one. However, a single
joint of this type has very different kinematics to a chain of joints,
and the resulting motion looks unnatural. Using our rod constraint
allows the ragdoll to both converge quickly and look plausible.

9 Limitations and Future Work

The restriction of the constraint curve to a circular arc is useful for
keeping control of our ragdolls, but it does not lend itself to a truly
expressive model of Kirchhoff elastic rods. An interesting exten-
sion would be to follow [Bertails et al. 2006] more closely and use
helical constraint curves. This would mean finding a set of con-
straint equations that could project the configuration of two arbi-
trary rigid bodies to the nearest configuration with a valid adjoining
helix.

The other major candidate for simplification in ragdolls is the shoul-
der region. Unlike the spine, the shoulder does not have a simple
kinematic approximation. We believe the problem of finding an
expressive shoulder constraint is best approached in a data-driven
way, similar to that taken by Engell et al. [2012], and we plan to
work on this soon.

εang

εlin

Passive bending (Figure 2) Ragdoll drop (Figure 1)

Figure 8: Residual error per frame after 20 iterations in ragdolls
using spines with three joints (blue) and our rod constraint (red).
The top graphs show the total dislocation of the joints in each rag-
doll in cm, and the bottom graphs show the total angular violation
in radians.
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