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Abstract: 
Large cohort studies and more recently electronic medical records (EMR) are being used to 
collect massive amounts of genetic information. Implementation of artificial intelligence has 
become increasingly necessary to interpret this data with the goal of augmenting patient care. 
While it is impossible to predict what the future holds, policy makers are challenged to create 
guiding principles and responsibly roll out these new technologies. On March 22, 2019, the 
University of Utah hosted its fourth annual Precision Medicine Symposium focusing on artificial 
intelligence, assembling large cohorts, and the population data revolution. The symposium 
brought together experts in medicine, science, law and ethics to discuss and debate these 
emerging issues. A link to the full conference recording can be found at 
http://www.kaltura.com/index.php/extwidget/preview/partner_id/670542/uiconf_id/36005582/em
bed/auto?&flashvars%5BstreamerType%5D=auto&flashvars%5BplaylistAPI.kpl0Id%5D=0_yfqte
r8f 

 
 

Opening Keynote Session: Assembling Large Cohorts for Precision Medicine 
 
Genetic information continues to be collected at a rate that exceeds our current ability to 
interpret and translate these finding into meaningful healthcare solutions. Yet, paradoxically the 
continued growth of biobanks and cohort studies provides the necessary power and diversity to 
elucidate potential pathophysiology and pharmacologic targets of complex polygenic diseases, 
thus accelerating the translational processes.  
   
Dr. Lon Cardon, a statistical geneticist and Chief Scientific Officer at BioMarin Pharmaceutical, 
argues that the benefits of Precision Medicine accrue with the translation of genetic variants into 
better therapies for patients with both rare and complex common diseases. As with new 
technologies, the broader field of Precision Medicine is impacted by the “hype cycle,” where a 
newly invented technology does not initially deliver on the ambitions and expectations, which is 
followed by an exodus of researchers and interest.  Eventually the technology confers benefits 
and becomes profitable. One of the main challenges that initially faced precision medicine is the 
lag between genetic discoveries such as the cloning of CFTR in cystic fibrosis in 1989 and the 
clinical translation into medicines almost 30 years later. Other well-known genetic disorders 
such as Duchenne muscular dystrophy and phenylketonuria (PKU) were also discovered 
decades ago, but clinical applications are only now coming into fruition. With regards to the 
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“hype cycle,” precision medicine is rebounding, starting by delivering targeted therapies in 
oncology and more recently, for rare and common diseases. 
 
The discovery process has been rapidly accelerating, with respect to rare monogenic diseases. 
What used to take years is now being discovered at a rate of three per week, largely due to new 
sequencing technologies and initiatives such as the Rare and Undiagnosed Disease Network.1 
In conjunction with the increase in gene discoveries by researchers, the Food and Drug 
Administration (FDA), has responded in kind, by increasing the number of approvals of orphan 
drugs for rare diseases. There was a record number of approvals in 2015 and continues to 
increase.2 Even with the increase in orphan drugs, there are still plenty of new discoveries that 
are waiting for a clinical application. However, discoveries surrounding common complex 
diseases such as type II diabetes mellitus (T2DM) or coronary artery disease (CAD) are not 
progressing at the same rate. Instead of using family pedigrees with probands to identify genetic 
causes of monogenic disorders, common complex genetic disorders require cohorts with large 
sample sizes to identify loci of interest. Dr. Cardon introduced the Wellcome Trust Case Control 
Consortium (WTCCC) as an example of how a large cohort was assembled to investigate seven 
common complex diseases using GAWS with 2,000 cases to 3,000 controls.3 Prior to the 
WTCCC there were only 10 genes identified for common complex diseases, which the WTCCC 
doubled to 20. In a little more than a decade later, there are now over 6,000 genes with variants 
identified for common complex diseases.4 The plethora of data is overwhelming, and the field 
rapidly progressed from having too few to too many targets in such a short period. Specifically, 
with regards to inflammatory bowel disease, associations with over 200 loci have been 
identified. These findings could be paralytic, and the question remains: which are optimal drug 
targets for new therapies?  
 
When considering the intersection of genetic variants and drug effects, Dr. Cardon highlighted 
that genetic effect size does not equal drug effect size.  For example, in the setting of lowering 
the risk of cardiovascular disease, two specific genes HMGCR and PCSK9 can be compared. 
The loss-of-function of PCSK9 has a dramatic effect in lowering risk of CAD; by contrast, much 
more modest salutary effects are seen with the variant rs12916 in HMGCR. However, when 
comparing an HMGCR inhibitor such as rosuvastatin to the PCSK9 inhibitor alirocumab in 
randomized controlled trials, the treatment effects on lowering LDL cholesterol appear to be 
comparable. In relating the example of HMGCR and PCSK9 to the more than 6,000 loci 
identified for common complex diseases, the genetic effects of any one locus may seem 
inconsequential, but targeting those genes could have a dramatic drug effect, thus each locus 
could be considered as a serious target. In the drug discovery domain, drugs that have an 
underlying genetic basis have double the clinical success rate and is the best predictor of 
success. Furthermore, the success rate increases to ten-fold when considering a rare disorder, 
due to their large genetic effects that are monogenic in nature.5 Until only recently, the dogma 
was to discover and target the “drug-able genome” or the idea that only certain genes were 
amenable or targetable by chemical or biological approaches. This is no longer the case with 
the advent of oligonucleotides, modified RNA, or gene-based therapies, as we can now replace 
or modify almost any gene in the genome. Gene editing has also completely transformed basic 
research by allowing researchers to create mutations of interest, instead of painstakingly 
sampling populations in order to find a mutation of interest, thereby saving a significant amount 
of time and money.  
 
With the genetic information and the modalities to implement them, the third component is 
getting patients into large cohort studies, which is key to unlocking their full potential. 
Assembling all of the pieces together highlights the complexity of modern drug discovery in an 
ocean full of opportunities with no clear place to start. According to Dr. Cardon, one of the best 
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places to start, is to utilize rare genetic disorders that are “experiments of nature.” In returning to 
the example of PCSK9, individuals with loss-of-function alleles of PCSK9 are at lower risks of 
CAD with lower levels of LDL cholesterol, as compared to those with gain-of-function alleles 
who have a higher risk of CAD and higher levels of LDL. Thus, human genetics can mimic 
therapeutic dose-response curves and is highly attractive for proof of mechanism, efficacy, and 
safety. These experiments of nature can lower the risk of the drug discovery process and even 
reduce or eliminate the need for basic research, but currently there are relative few excellent 
examples, making each highly desirable if observed. When considering a complex phenotype 
such as height, one locus was identified in 20076 whereas a total of 712 loci had been identified 
by 20187.  However, only four loci—FGFR3, CNP (a modulator of FGFR3), NPRB (a receptor 
for CNP), SHOX (part of the FGFR3 signaling pathway)—have the properties of an ideal drug 
target based on genetic data.  Their attractiveness is due to the following observation: gain-or 
loss-of-function variants in these four loci are associated with greatly increased or reduced 
height, thus it seems that this particularly FGFR3 pathway seems to contain potentially valuable 
drug targets. 
 
The most effective way to identify these experiments of nature is through the use of large, 
diverse cohorts with a broad reach that not only include patients of the phenotype of interest, 
but of unrelated phenotypes as well. As a member of the advisory board, Dr. Cardon highlighted 
how the All of Us Precision Medicine initiative is one of the largest to date with a goal of 
enrolling one million participants, is patient oriented and driven, and will be a catalyst for positive 
change in medical research. All of Us was built upon lessons learned from other large cohorts, 
by emphasizing size, genetic and phenotypic diversity, and will have active data collection 
through tools such as the use of wearables. Two other examples of large cohorts provided by 
Dr. Cardon, BiobankUK and Genomics England were used in designing All of Us.  
 
BiobankUK enrolled 500,000 healthy people ages 40 to 69 to study the effects of genetic 
predisposition and environmental exposure to the development of new disease. Data from 
health records and physical measures such as lab values, vital signs, and electrocardiograms 
are recorded a passive way, requiring little effort from participants and physicians. Since its 
launch in 2012, the process aims to be transparent as the data are open and available to all, 
with over 400 peer-reviewed papers having been published to date. To further emphasize the 
power of the large cohort that BiobankUK provides, Dr. Cardon provided the example of the 
discovery a glucose-lowering variant in GLPR1 that is protective for CAD.8 The discovery 
process, which took five years and over 1,500 emails to assemble data from 50 cohorts, was 
replicated and validated by BiobankUK in 90 minutes and three emails. Not only have large 
cohorts been transformational in identifying new gene discoveries but have also led to the 
creation the next big thing: polygenic risk scores, which evaluates the combined effect of 
multiple loci for common complex diseases. Previously, the predictive value of risk for given loci 
for T2DM was approximately equivalent to that of body mass index, as each locus individually 
has a minimal impact on disease risk. However, when considering the unique combination of 
loci as part of the polygenic risk score, the patients at the tails of polygenic risk score have a 
predictive value that is equivalent to having one pathogenic allele in a monogenic Mendelian 
disorder.9 
 
Genomics England, a more recent example of a large cohort program, has almost 100,000 
patients and focuses on rare diseases, having specifically oversampled undiagnosed 
neurological diseases and cognitive deficits. Investigators using the Genomics England cohort 
have the potential to identify patients—such as PKU or lysosomal storage disease-- who are 
either un- or misdiagnosed and for whom an existing treatment is readily available. An 
unexpected route to Precision Medicine identified by Genomics England is the identification of 
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incidental findings that will help characterize parents who are asymptomatic or probands for 
whom a genetic alteration was not identified. The example provided are mothers who were 
sequenced together with their affected child(ren), only to find that the child did not carry genetic 
mutation(s) for PKU, but instead were exposed to elevated levels of phenylalanine in utero from 
asymptomatic mothers with undiagnosed maternal PKU. Dr. Cardon cautioned that while large 
cohorts have been transformational in genetic research, families still have to be involved as 
these cases of PKU would not have been solved if the mother had not been included. The 
United Kingdom wants to take the next step forward by sequencing the genomes of five million 
newborns in the next five years.10 In addition to the work in the United Kingdom, the 
International Cohorts Summit, held in March 2018, looked to create minimum criteria for large 
cohorts with at least 100,000 healthy participants who are available for biospecimen collection 
and longitudinal follow-up. Overall, 60 cohort studies that include 25 million people (with 
expansion to 36 million) in 24 countries were identified.11 The availability of data from these 
studies offer exciting possibilities, but the challenge remains: How can we translate these data 
into meaningful therapies?  
 
Dr. Cardon concluded that no single population-based collection is enough. There is always a 
need for more size, diversity, phenotypic breadth, and depth. One way to accomplish this is to 
have greater investment in non-population-based samples such as including large families, 
founder populations, and consanguineous pedigrees, which can clarify and amplify genetic 
signals. He emphasized the need for better harmonization between clinical and phenotypic data 
and genomic data, which can be particularly problematic when trying to combine multiple large 
cohorts across healthcare systems. Investing in computational infrastructure and data analysis 
tools are important ingredients for success. Through the utilization of genetic information, 
modalities to implement them, and getting patients into large cohort studies, the opportunities 
are endless, where using experiments of nature to study rare diseases with a populational 
context leads to insights into common complex disease leading to translation of new diagnostics 
and therapeutics. 
 
 
Session 1: ELSI Issues in Assembling Large Cohorts for Precision Medicine 

 
Researchers and clinicians alike should be aware of the ethical concerns in both the methods 
used to collect genetic information, but also implementing treatments based on genetic 
information in the absence of thorough physiological understanding or in lieu of the current 
standard of care. From the research perspective, this relies on transparency in cohort study 
recruitment methods; from the clinician perspective, this relies on integration of patient 
preferences and understanding of treatments. In order to achieved transparency and patient 
understanding, communication methods should be tailored to the audience and account of 
discrepancies in health care literacy. 
 

A. Assembling Large, Longitudinal Cohorts: Ethical Considerations 

 
Dr. James Tabery is an Associate Professor of Philosophy at the University of Utah. He studies 
the philosophy of science and applied ethics. Dr. Tabery addressed the ethical concerns in 
assembling large longitudinal cohorts for genetics research. The session started with a viewing 
of the All of Us Anthem12, a promotional video put together by the NIH All of Us research 
program.13 The goal of the program is to collect data from one million Americans and create a 
research database that can help answer important health questions and create more 
personalized care. The program has an emphasis on genetic data but recruiting material 

 Electronic copy available at: https://ssrn.com/abstract=3491307 



 5 

emphasizes lifestyle, environmental factors, and family history. In the recruiting video, there is 
no specific mention of genetics, DNA, or other biomedical information.  
 
Historically, longitudinal cohorts have come in many different forms. Though the All of Us 
program and its British counterpart the UK biobank, focus on genetics with hundreds of 
thousands of participants, many previous programs have instead focused on environmental and 
lifestyle components in smaller cohorts in the thousands. One of the first longitudinal cohorts, 
The Framingham Heart Study, began in 1948 and started by recruiting 5,209 adults from the 
town of Framingham Massachusetts14. The study followed these participants as well as their 
children, grandchildren, and spouses ever since its inception, collecting information that has led 
to the identification of cardiovascular risk factors. It is still going on today and is considered the 
gold standard of longitudinal cohorts. Other cohorts have taken a similar approach such as the 
Dunedin longitudinal study15 that followed the lives of 1037 babies born 1972-1973 at Queen 
Mary Maternity Hospital, in Dunedin, New Zealand and National Children’s Study that attempted 
to follow 100,00 children from before birth to after age 21 across the United States. 
 
When starting a large longitudinal cohort many design decisions must be made. How a study is 
designed is directly reflective of the goals of the study. Decisions about the size, the types and 
amount of data collected, time frame, and types of participants included all must be made. 
Certain types of data sets lend themselves better to different types of research and the way in 
which you design a study dictates how that data will be used. Due to the scarce resources 
available for biomedical research, such projects must also consider ethical implications of who 
benefits from the research, if it is the best use of scarce biomedical research resources, and if 
the way you are promoting and advertising your study is in alignment with the actual goals of the 
study.  
 
Dr. Tabery proposed that sufficient ethical consideration is met when there is alignment of study 
design with clear communication of study goals to potential participants. In medicine consent is 
paramount and if you are misrepresenting the goals of a research project to its participants this 
is a concerning breach of trust and ethics. Furthermore, when research resources are limited it 
is unethical to represent a study as filling a need and addressing issues that it does not. Though 
All of Us advertises itself as a lifestyle, environmental, and genetics research tool it is primarily 
designed for genetics research13. For example, the study has 3 genome sequencing centers 
and only a genomics working group, and prioritizes collection of DNA samples via blood but not 
longitudinal, accurate lifestyle or environmental data at this time.  Though non-genomic facets of 
the study are promised later, All of Us appears to be primarily a genetics research project. Such 
is highlighted in the data collection methods, the enrollment materials, and the recruitment and 
advertising materials. 
 
Longitudinal cohorts come in many different designs with many different goals, all with their own 
merits. The value of each type of study and its design can and should be debated to best direct 
limited funds. This is not possible when a project is incompletely forthright in its intent and has 
some misalignment between the design of this cohort and the stated recruitment goals. 
 
 

B. Crossing the Finish Line: Translating Precision Medicine to the Clinic  
 
Dr. Kyle Brothers, a clinician from the University of Louisville, addressed the difficulty of 
translating and further implementing precision medicine into the clinic. Focusing on the final 
steps that must be taken to bridge the gap between development of new, tailored treatments 
and the administration of these therapies to their particular target subpopulations. 
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Dr. Brothers likened Precision Medicine to the theories of Alan Turing, a mathematician and 
early pioneer in the realm of computing who is widely known for his contributions to decrypting 
German messages in Project Ultra during World War II. The device responsible for encrypting 
sensitive data was known as the Enigma cipher machine, which takes information (input) and 
encrypts it (output). In this analogy, the goal of Precision Medicine is to take the output (a 
disease state or phenotype) and determine what is required (medications, interventions, etc.) to 
revert it to its original message (a state of health). In classical biomedical science, Dr. Brothers 
argues, we are attempting to use the human body to understand mechanisms that lead to 
disease. This is contrasted with Turing’s later career, where he attempts to determine whether, 
without understanding the human mind (the “Black Box”), we can contrive a model capable of 
simulating it. In summary, Dr. Brothers argues that the two approaches to Precision Medicine 
mirror the two stages of Turing’s career – the first, gaining insights based on a mechanistic 
understanding of the model, and the second, gaining insights independent of a mechanistic 
understanding of the model. 
 
This discussion led to the following question: Can non-mechanistic (so-called “Black Box”) 
Precision Medicine insights be used in the rollout of a clinical plan? That is, can we make 
clinical decisions, such as employing a specific treatment, without a complete understanding of 
how they function? To dissect this issue, Dr. Brothers turned to the topic of Machine Learning. 
Companies such as Google and Amazon represent effective examples of machine learning that 
rely on previous user behavior to prioritize search hits or make recommendations for purchase, 
respectively. However, these Machine Learning models only function effectively because there 
is an element of human choice.  
 
For a machine learning algorithm to be useful in medicine and employed as part of the clinical 
decision-making tree, Dr. Brothers argues that clinicians and patients need enough information 
to decide whether to follow a Precision Medicine (“Black Box”) recommendation, similar to how 
a decision is required whether to purchase an Amazon-recommended product. In such cases, 
the Machine Learning algorithm needs to be transparent enough to both the provider and the 
patient to make a good clinical judgement.  
 
Two approaches were outlined to deal with this gap. The first involves the use of “Black Box 
insights” to inform mechanistic basic science. From here, mechanisms are understood prior to 
implementation resulting in care based on mechanistic reasoning. Here, so-called “Big Data” is 
parlayed into mechanistic understanding. The second approach involves an Evidence Based 
Medicine approach in which non-mechanistic insights are used to identify subpopulations and 
precision treatments, followed by comparative effectiveness research that ultimately gives rise 
to a new standard of care. However, there are issues inherent in Comparative Effectiveness 
Research trials in Precision Medicine. These include dealing with rare subgroups for which 
design of clinical trials is difficult, as well as carry-over, order, and irreversibility effects for 
would-be enrollees who have failed a standard (or other previous) therapy. Finally, Dr. Brothers 
touches on the concept and challenge of equipoise as it relates to Comparative Effectiveness 
Research. Can standard of care be withheld in order to study precision therapies? Can 
precision therapies be withheld in cases where a patient is known to have a specific genotype or 
disease characteristic that is known to fail standard therapy? These questions further address 
the critical challenges of Precision Medicine, which involve its transformation from theoretical 
tool to authentic therapeutics or interventions with substantive clinical utility.  
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C. Communication Issues in Recruitment to Large Cohorts for Precision Medicine 

 
Kimberly Kaphingst ScD, is a Professor in the Department of Communication and the Director 
of Cancer Communication Research at the Huntsman Cancer Institute (HCI) at the University of 
Utah. She discussed cohort recruitment from a communication perspective. She noted that 
health literacy is a useful framework for thinking about communication skills that individuals will 
need in order to navigate this environment. Health literacy is “the degree to which individuals 
have the capacity to obtain, process, and understand basic health information and services 
needed to make appropriate health decisions.”16 This skillset will play a key role in people’s 
ability to understand information they encounter during cohort recruitment and consent 
processes and, ultimately, make an informed decision about whether to participate.  
 
Health literacy levels vary widely in the US population. To illustrate how this applies to precision 
medicine cohort recruitment, Dr. Kaphingst highlighted data from several studies. The first, a 
large national assessment conducted by the U.S. Department of Education, showed limited 
levels of health literacy among many U.S. adults.17 Roughly 36% of U.S. adults had basic or 
below basic levels of health literacy, meaning they are likely to struggle with many tasks in the 
health care system. About half of adults (53%) had intermediate health literacy skills, and only 
12% were considered to be proficient—that is, to possess the skills required to understand 
complex presentations of abstract or unfamiliar subjects, such as consent forms.  
 
These data suggest that making informed decisions about whether to join a precision medicine 
cohort may be a challenge for many adults. However, it may be especially challenging for 
certain population subgroups. Dr. Kaphingst pointed out that individuals from underserved 
communities, such as Black/African American, Hispanic/Latino, or American Indian/Alaska 
Native individuals, are more likely than those from other racial and ethnic groups to have limited 
health literacy. Older age and lower educational attainment also predict limited health literacy.  
 
Knowledge levels specific to precision medicine and genetics may also be relatively low in the 
U.S. Dr. Kaphingst described the results of a recent study, which found that among individuals 
with adequate health literacy, only one-third were familiar with the term “genomics”, one-fourth 
with the term “precision medicine”, and one-fifth with the term “biobank.”18 Familiarity with these 
terms was markedly lower for people with limited health literacy. Further, among those with 
lower health literacy, only half indicated familiarity with the term “DNA” and one-third with 
“genetic testing” and “gene.” Hence, a substantial portion of the population might not understand 
the implications of participating in precision medicine cohort studies.  
 
Attitudes toward precision medicine research appear to vary across population subgroups. 
Whereas most U.S. adults surveyed by the National Human Genome Research Institute in 2016 
were favorable toward the All of Us research, this study found a notable education-related gap 
in responses.19 Those with lower educational attainment (i.e., a high school diploma or less) 
were less supportive of the research and were also less willing to participate than those who 
had attended college. 
 
As a final example, Dr. Kaphingst described possible racial differences in people’s willingness to 
share biospecimens based on findings that emerged in her own research. In one study, Black 
men in a prostate cancer cohort were somewhat more likely than White men to consent to 
linkage of their biospecimens with their personal health information.20 However, Black 
participants were also less likely to feel comfortable sharing their data at all, even when it would 
be de-identified. Notably, overall willingness to consent to the use of biospecimens with linked 
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personal health information was low for both Black and White men. 
 
Several factors are likely to influence recruitment for All of Us and other large population-based 
cohorts, and many of these factors are connected to health literacy. Thus, Dr. Kaphingst 
stressed that communication approaches that facilitate understanding across the spectrum of 
health literacy levels will be essential to consider. A lack of understanding could make 
individuals less likely to participate in research cohorts—or, conversely, more likely to do so—
and either outcome has considerable ethical and social implications. 
 
Dr. Kaphingst concluded by highlighting research-based communication strategies that can 
support informed decisions about precision medicine cohort participation. The first is adopting a 
plain language approach when developing recruitment and consent materials; namely, using 
common words instead of jargon and defining technical terms. For instance, the idea of 
biobanks—for which participants are often asked to provide consent to unknown future use of 
their data—is a difficult concept for many people to grasp. 
 
Dr. Kaphingst emphasized the importance of testing materials with target audiences and 
undergoing multiple rounds of revision as needed. In addition to clear language, evidence-
based formats can go a long way toward facilitating understanding of complex concepts. Rather 
than relying on text-based materials, conveying information via audiovisual and in-person 
modes (e.g., healthcare providers or community liaisons) can also support understanding about 
research participation across literacy levels. Dr. Kaphingst noted that interactive digital tools 
embedded in patient portals could be an effective way to help walk people through the 
processes of recruitment and informed consent.  Finally, developing communication materials 
targeted to different population groups (e.g., based on race/ethnicity, age, or health literacy 
level) could be an effective strategy for ensuring that cohorts include diverse groups and are 
representative of the U.S. population.  
 
 
Session 2: The Role Of AI/Deep Learning in Genetic Analyses and Phenotyping of Large 
Cohorts 
 
Large genetic databanks are collected through above mentioned cohort studies, but additional 
largely-untapped data forms exist within all electronic health records (EHR). Currently, various 
groups are testing machine learning models that utilize information available in the EHR to 
augment patient care. As Implementing AI in healthcare becomes a reality along with it comes 
interest from big-named corporations. While it is impossible to predict what the future holds 
policy makers are challenged to band together to create guiding principles and responsibly 
rollout these new technologies. 
 

A. Machine-Readable Phenotype Descriptions and the Utah Genome Project. 
 

Dr. Mark Yandell, the co-director of the USTAR Center for Genetic Discovery at the University 
of Utah, opened the final session with a talk that encompassed the importance and the process 
of readying electronic health records, or EHR, for machine learning. 
 
He began with the important distinction that needs to be made between the terms “controlled 
vocabulary”, which is a set of terms used to describe data, and ontology, which goes a step 
further and includes relationships between these terms. This extra step makes the data more 
useful when analyzed by a computer.  One specific ontology, the Human Phenotype Ontology 
(HPO), describes patient phenotypes for the purpose of genetic analysis. It includes free-text 
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descriptions that a human can understand, as well as machine-readable phenotype descriptions 
that a computer can use. 
 
Now that we have phenotypic descriptions of data that a computer can read, we can assign 
these phenotypes to specific genes using a program developed here at the University of Utah 
called Phevor (Phenotype Driven Variant Ontological Re-ranking Tool). This approach has 
many advantages, including the ability to detect new genes associated with a phenotype, the 
ability to be used on large sets of data, and the lack of requirement for a candidate gene list for 
each specific phenotype.  
 
So how does all this relate to the Utah Genome Project? The University of Utah Hospitals and 
Clinics have a real-time database of the information captured in the EHR called the Enterprise 
Data Warehouse, with over 3.7 million individuals and 14 years of data. Some of the most 
valuable but untouched information in the EHR are in the physician’s free-text medical notes for 
each individual patient. If we converted this free-text data into machine-readable text (like HPO 
terms), we could analyze this data with their corresponding genomic sequences. Practice runs 
have indicated that it would take 6 hours on 64 core processors to run every clinic note in the 
data warehouse. This would have real world implications for identifying rare disease phenotypes 
and potential targets for new treatment possibilities. 
 

B. White Coat, Black Box: Augmenting Clinical Care with AI in the Era of Deep 
Learning 
 

Dr. Jenna Wiens, is the Morris Wellman Assistant Professor of Computer Science and 
Engineering (CSE) at the University of Michigan in Ann Arbor. Dr. Wiens described current 
challenges and ongoing research in the use of deep and representative learning in the 
augmentation of clinical care. The context for Dr. Wiens research is that in today’s world of 
clinical care, massive amounts of patient data are collected including demographics, diagnoses, 
medications, imaging, clinician notes and much more. Projected physician shortages, increasing 
clinician burnout, and lack of proper clinical tools are contributing to a growing number of 
medical errors, now the third leading cause of death in the U.S. There is a substantial need and 
opportunity for artificial intelligence (AI) to help overcome these obstacles.  
 
Dr. Wiens and her team are currently validating AI models which construct patient risk 
stratification algorithms to help predict the occurrence of hospital acquired infections such as 
Clostridium difficile. These models can leverage existing electronic health record (EHR) data 
points such as medication lists, procedures, rooms assignments, assigned healthcare staff, lab 
results, and even proximity to other infected patients to predict infection occurrence. Current 
models show promise in identifying at-risk patients 5 days in advance of when detectable signs 
and symptoms may appear. Using these predictive models could guide preventative clinical 
interventions such as targeted cleaning or infection testing. These interventions could decrease 
length of stay, reduce costs, and improve patient outcomes. Similar models are being designed 
to predict disease trajectories of severe disease like acute respiratory distress syndrome 
(ARDS), graft versus host disease (GvHD), sepsis and shock, acute renal failure, and other life-
threatening diseases encountered in the hospital setting. However, the development of these AI 
models presents significant technical challenges that can be alleviated by the use of 
representation learning and interpretable models. 
 
Representation learning is an important strategy employed in the development of deep learning 
models. Typically, new training models rely on hand-engineered variables for representing data 
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to the machine learning-based prediction model. For example, heartbeat tracings may be 
represented to a model based on peak amplitude or interval periods between heart beats. The 
designation of data representing the tracings is critical for how the predictive model learns to 
distinguish between different heart beats. Choosing the wrong representation may lead to 
difficulty in identifying pathologic heart rhythms. These hand-designed representations can be 
labor-intensive and error-prone. In contrast, representation learning is the process by which the 
model utilizes deep neural networks to independently represent data sets without user-derived 
input. These techniques eliminate the need for time-intensive representation and have led to 
breakthroughs in fields such as image recognition and translation, with use in identifying skin 
lesions or compiling pathology reports. Limited implementation of these tools in healthcare is 
largely due to technical challenges due to small sample sizes and model interpretability, with the 
latter considered here.  
 
A model is highly interpretable when the representations are hand-engineered. In this case, the 
underlying thought-process of the model is known and understood by researchers. However, 
with representation learning, the properties of the of the neural network algorithms are unknown. 
It is important to be able to query the model to learn what factors were considered significant 
and then correlate those items with clinical knowledge. Models will lack common sense, even if 
they are interpretable. Thus, interpretability is neither necessary nor sufficient and must 
integrate clinical knowledge in model design. In the case of C. difficile infection prediction, each 
significant variable identified by the prediction model is assigned a weighted binary designation 
depending on any known association with C difficile infections. This regularization penalty favors 
a solution that is sparse in the set of unknown variables and dense in the set of known 
variables. These and similar techniques can lead to models that are not only data-robust but 
clinically credible.  
 
While these tools are criticized as being unknowable “black-box” models, Dr. Wiens suggests 
that similar tools are already common in clinical practice. For example, a physician may not 
know the physics behind the function of a digital thermometer, but they are used every day 
because they are thoroughly validated and trusted. If the model is meticulously vetted and 
validated, it can certainly be trusted even if the underlying mechanisms are not understood by 
clinicians.   
 
Before these models are tested in expensive clinical trials it is critical that they are prospectively 
validated. The current model for predicting C.difficile infections is being prospectively validated 
in silent mode on daily live streams of patient data. This validation enables real time review of 
errors which provide crucial clinical context. These processes help shed light on things that 
should be included or excluded in the model. The evaluation of interventional decision-making 
and patient outcomes will also be a critical component of future validation.  
 
Prospective validation of similar models will require infrastructure to integrate patient data with 
artificial intelligence. As they enter clinical practice, these machine learning-based prediction 
models should not be feared as black boxes but as useful tools developed and interpreted 
alongside the clinical knowledge of domain experts.  Such models have the potential to reduce 
healthcare costs and medical errors, thereby improving clinical outcomes. 
 

C. Precision Health, AI and Ethics 

 
Steve Mutkoski, JD is a government affairs director at Microsoft focusing on healthcare policy 
and technology issues. He described some of the intersections, limitations, and ethical concerns 
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inherent in emerging AI technologies for healthcare applications. His background as a Microsoft 
lawyer specializing in public policy give him insight through Microsoft's cloud computing 
services, Azure, which currently stores data and runs computing workloads for a number of 
private and public sector healthcare organizations. He stressed that with each new wave of 
technology comes tremendous opportunity but also a tremendous responsibility to make sure 
that it is utilized in ways that benefit society and avoid pitfalls that can undermine trust in new 
technology. He stressed that public trust is something that can be easy to lose if those in the 
precision medicine world aren’t careful in how they develop and deploy AI systems. Silicon 
Valley’s policy of moving fast and breaking things might not be the right approach with this 
emerging technology for healthcare applications. As a warning of what might happen, Mr. 
Mutkoski pointed to the recent loss of trust in autonomous vehicles after a highly-publicized 
2018 autonomous vehicle crash that resulted in a pedestrian fatality in Arizona. 
 
Public trust in new technologies can be undermined by overpromising and misinformation. For 
example, 23andMe’s original panel of 250 diagnostic tests for genetic health may have 
promised too much. As a result, the FDA required 23andMe to stop offering health-related 
genetic testing until it could meet reasonable scientific standards. When 23andMe re-released 
its health-related testing offering (after substantial engagement with the FDA), it had far fewer 
diagnostic options. 23andMe’s initial enthusiasm for giving the public information may have 
created unrealistic expectations in  the science, and the FDA had to step in to prevent potential 
harm.  
 
A second example is offered by an article by a CBC reporter who sent her and her twin sister’s 
DNA to be analyzed by five different genome sequencing companies. Each company reported a 
slightly different genetic profile. When asked, one geneticist responded that genetic testing of 
this nature was as much an art as a science. Mr. Mutkoski disagrees, arguing that genetics is a 
science, and needs to protect itself against bad headlines like these in order to prevent a loss of 
trust. 
 
Mr. Mutkoski suggested two avenues to help prevent such a loss of trust. First, acquiring patient 
input will better get them on board, comfortable and aware of new technologies. Patient 
education should be a large part of preventing adverse public opinion. Second, he encouraged 
active engagement with policymakers to ensure that policymakers understand the technologies 
we are using and the often complex healthcare related solutions we are building on that 
technology.  
 
Mr. Mutkoski recently led a group in writing an article about the potential of AI and Precision 
Healthcare published in the Fall 2018 issue of The SciTech Lawyer, published by the American 
Bar Association’s Section of Science and Technology Law.29 This article suggests a series of 
principles for  the responsible development of AI in the healthcare sector today: (a) Reliability 
and Safety, (b) Fairness, Inclusion and Bias, (c) Transparency and Accountability, (d) Privacy 
and Security and (e) Future Workforce Issues.  
 
Data Security and Privacy Issues: It can be difficult to predict some of the ways with which we 
will use genetic data. Similar problems can emerge under different names and labels on it while 
new problems can seemingly emerge which make those involved look back and say “Why didn’t 
we see this coming and prepare for it?”  
 
One example is law enforcement’s use of genetic databases as a powerful tool to solve crimes, 
as seen in the Golden State Killer case. While Mr. Mutkoski believes that particular use largely 
has society’s stamp of approval, the realization that one person’s genetic information can help 
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identify very distant relatives, who in no way consented to the use of this “familial” genetic data, 
creates some tension with expectations around the concept of notice and consent. 
 
Another example is the All of Us program, an ambitious program to create a “biobank” of one 
million genetic donors in the United States. One concern raised with the All of Us program is 
what limits would be placed on third party access to donor data, either through civil or criminal 
processes?   Mr. Mutkoski pointed to the experience that large global cloud computing providers 
have had with the data they hold for customers, which in essence has create a series of 
“honeypots” for personal data that civil litigants and law enforcement authorities have sought to 
obtain for use as evidence in civil or criminal matters. 
 
Some believe that the recently-enacted 21st Century Cures Act addresses these problems 
about third party access thought civil or criminal legal process. Mr. Mutkoski, however, argues 
that issues likely remain. As a federal statute, it is unclear that the Cures Act provisions would 
limit State courts from allowing discovery of such data for a variety of purposes. Other relevant 
legislation such as the 2008 Genetic Information Nondiscrimination Act (GINA) prevents certain 
discriminatory uses of genetic data (for instance, health insurance companies are precluded 
from using genetic data to deny coverage and prohibits an employer from using genetic 
information for decisions like hiring and firing) but other potentially problematic and 
discriminatory uses are not prohibited (long term disability insurance and life insurance are not 
covered by GINA).  
 
The databases and biobanks themselves are not the problems. Rather, we as a society need to 
agree on a set of policies regarding the appropriate use of health data and by extension 
highlight as many of the “prohibited” uses as possible.  It may be impossible to predict how this 
data will be used, as it would have been impossible for Henrietta Lacks to have been given 
informed consent for all of the future uses of her cells. However, Mr. Mutkoski cautions, just 
because we cannot predict them all, does not mean that we should not be on the lookout for 
potential harms. 
 
Fairness, Inclusion and Bias: Mr. Mutkoski pointed out two potential sources of bias in the 
development of AI-enabled precision health solutions. First, there are some challenges with 
data itself, specifically much of the genomic testing and study to date has been performed on 
Caucasian populations. Second, often the scientists driving these studies are a largely 
homogeneous group of 20-40-year-old white males.  As the old adage goes, the invention often 
reflects the inventor. Diversity and inclusion initiatives are being undertaken to combat this but 
will take time to change the current paradigm in research. 
 
Safety and Efficacy: Mr. Mutkoski spoke briefly about the need for well-designed trials to 
validate the safety and efficacy of AI tools in healthcare. He cited several recent news articles 
claiming that AI is more efficient and safer than current technologies, and that AI can in some 
cases detect cancer more accurately than pathologists. In many cases though, a deeper 
inspection of the claims suggests that the AI algorithms hold promise but have not yet been 
validated to the level of headlines, and certainly not to the level needed to deploy the algorithms 
in a clinical setting.  We have a well-established framework for review of traditional medical 
devices which diagnose or treat medical conditions, and we must clarify where these new AI-
enabled algorithms must go through that existing process.  Many of these new technologies will 
need to go through those processes.  Properly designed trials, not just headlines, will be an 
essential part of those clearances and approvals. Yet, he added, there will be challenges with 
validating machine learning programs that are “unlocked”,  and that change based on new data 
they encounter after their safety and efficacy have been verified. Do the results of validating 
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studies stay valid when the underlying algorithm changes? It is one thing to train an algorithm 
on a given dataset and verify its behavior, but do we trust the “continuous learning” capabilities 
built into it such that we can be confident that future output from the “updated” algorithm will be 
valid and accurate? Our current regulatory frameworks will almost certainly need to be extended 
and expanded to properly cover continuous learning scenarios. 
  
 

D. Translational Frameworks: Transcriptomics & Breast Cancer 

 

Dr. Nicola Camp, a professor in the department of human genetics at the University of Utah, 
concluded the symposium and spoke about translational frameworks, meaning the way data is 
shared and communicated, in transcriptomics and breast cancer. 
 
Dr. Camp recognized that there is currently a shift from clinical data (i.e. physical exam findings 
and cell counts) to molecular data (i.e. SNPs and gene profiles). Therefore, it will be important 
to represent data across translational areas so that we use the same language when discussing 
big data.  The goal of Dr. Camp’s work was to find a platform for research to share information 
and data across the translational spectrum. 
 
The characteristics of gene expression was the starting point for developing a common platform 
for discussion of gene expression.  Specifically, the characteristics of gene expression in breast 
tumors were explored.  Typically breast tumors were divided into 5 distinct groups: Luminal-A, 
Luminal-B, HER2-enriched, Basal-like, and Normal-like (meaning the biopsy may have been of 
normal breast tissue).  These 5 groups were differentiated based on 50 genes, and any breast 
cancer could be assigned to one of these groups based on the expression profile of the 50 
genes 21,22. 
 
Some companies including Mammaprint, OncotypeDX, and Prosigna have developed methods 
of improving on the “5-bin” classification system by adding additional genes and using statistical 
tools to predict prognosis and recurrence rates of cancers based on their genetic profile 23-25.  
This innovation also led to the discovery that certain treatments were not as effective or 
necessary in certain women; for example, women with a better prognosis and lower longer-term 
risk could receive less toxic hormonal therapy rather than more traditional chemotherapy. Thus, 
complicated genetic data could be synthesized into a more understandable “risk score” that is 
translational across disciplines. 
 
This led Dr. Camp to explore tumor genomics, and how we classify and communicate about 
breast tumors.  In collaboration with Intermountain Healthcare, and utilizing the Utah Population 
Database, pedigrees were linked to pathology records and tumor genetics in the general 
population were mapped.  With a population baseline, it is possible to compare a cancer’s 
genetic profile with that of the general population.  The hypothesis was that if a particular type of 
cancer within a pedigree were genetically different than that of a sporadic mutation in the 
general population, such a difference would indicate some kind of genetic susceptibility within a 
family26.  However, after analysis of 15 different familial tumors, there was not any appreciable 
difference between the genetic profile of the familial cancers and the sporadic cancers in the 
general population. 
 
This led to the question: Does one variable (the 5 groups of breast cancer) provide sufficient 
data to properly describe a tumor?  Or does the genetic profile require additional dimensions to 
describe its biological variability? The comparison was drawn to Newton’s Color Theory which 
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described color as one spectrum divided into 7 entities ranging from red to violet.  In reality 
there are colors that don’t fit onto Newton’s color spectrum, just like there are breast cancers 
that don’t quite fit into one of the 5 tumor categories.  However certain colors like teal do not fit 
well into the spectrum.  A more contemporary, and accurate, analysis of color is in a three-
dimensional space with magenta, cyan, and yellow being the three dimensions.  With this 
approach, the entire spectrum of color can be generated using a 3-value code from these three 
dimensions.  Therefore, breast cancers might be able to be classified based on a multi-
dimensional space, instead of a linear spectrum. 
 
Using the “multi-dimensional reduction” approach, it is possible to generate a dimensional space 
that allows for more descriptive analysis of tumors.  Two cancers that look identical in a one-
dimensional space can end up very different from one another when additional variables are 
added; therefore, one could develop different treatment strategies and have different recurrence 
rates.  Instead of analyzing all 50 genes as one score, analyzing different families and groups of 
genes as one variable would allow for more personalized, effective stratification according to 
risk and prediction of responsiveness to specific therapeutic regimens. 
 
The problem with a multi-dimensional analysis is the lack of an accurate way to visually 
represent 5-dimensional space for breast tumors.  Thus, a revolutionary new platform was 
developed based on the color wheel, with a 5-dimensional space represented by a wheel with 
space for the value of each variable, much like a Red/Green/Blue color code. 
 
 

 
Figure 1 – Multiple quantitative dimensions of one breast cancer presented in a 
multidimensional space 
 
 
In Figure 1, use of this 5-dimensional space allows for more accurate and informative analyses.  
For example, analysis of one principal component (PC), which is the linear combination of the 
gene expression, was most descriptive of the tumor in isolation from any other variable, and 
was found to very accurately explain recurrence risk.  This finding was not present in a one-
dimensional analysis and was confirmed with clinical research27.  With this multi-dimensional 
approach applied to a completed European clinical trial (Geicam), the addition of paclitaxel (to a 
standard 3-drug chemotherapy regimen) was also shown to improve life expectancy by two 
additional years in node-positive women with low values in PC3/PC4.  By contrast, paclitaxel 
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was found to have no impact on the life expectancy for the subset of women (44%) with high 
values of PC3/PC427.   
 
The purpose of the multi-dimensional space was to find a difference between sporadic cancer in 
the general population and familial grouped genetic susceptibility to cancer.  This analysis 
allowed for high-risk pedigrees to be found within families, and for their genetic profiles to be 
mapped.  The PC variables were found to be inherited within families; by contrast, the one-
dimensional characteristic classifications were variable27. 
 
Dr. Camp believes that we will be able to predict the trajectory of future breast cancers by 
applying this five-dimensional space to their gene profile, which would allow for better screening 
and treatment guidelines.  In the future, there is the potential to correlate SNPs to the PC 
variables and know a woman’s tumor profile before a clinically apparent tumor develops.  
 
In summary, transcriptomics needed a different framework to have a more standardized 
discussion about breast tumors.  Within the new quantitative framework, 5 PC variables are 
compared instead of one cancer subtype, resolution can be added, outcomes can be more 
accurately predicted, therapeutics can be targeted to maximize benefit, and pedigrees can be 
analyzed to understand how cancer is inherited.  Big data may harbor many important 
discoveries, but for detection and rapid translation, the data framework matters. 
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