135 research outputs found

    Genome-wide interaction study of a proxy for stress-sensitivity and its prediction of major depressive disorder

    Get PDF
    Individual response to stress is correlated with neuroticism and is an important predictor of both neuroticism and the onset of major depressive disorder (MDD). Identification of the genetics underpinning individual differences in response to negative events (stress-sensitivity) may improve our understanding of the molecular pathways involved, and its association with stress-related illnesses. We sought to generate a proxy for stress-sensitivity through modelling the interaction between SNP allele and MDD status on neuroticism score in order to identify genetic variants that contribute to the higher neuroticism seen in individuals with a lifetime diagnosis of depression compared to unaffected individuals. Meta-analysis of genome-wide interaction studies (GWIS) in UK Biobank (N = 23,092) and Generation Scotland: Scottish Family Health Study (N = 7,155) identified no genome-wide significance SNP interactions. However, gene-based tests identified a genome-wide significant gene, ZNF366, a negative regulator of glucocorticoid receptor function implicated in alcohol dependence (p = 1.48x10-7; Bonferroni-corrected significance threshold p < 2.79x10-6). Using summary statistics from the stress-sensitivity term of the GWIS, SNP heritability for stress-sensitivity was estimated at 5.0%. In models fitting polygenic risk scores of both MDD and neuroticism derived from independent GWAS, we show that polygenic risk scores derived from the UK Biobank stress-sensitivity GWIS significantly improved the prediction of MDD in Generation Scotland. This study may improve interpretation of larger genome-wide association studies of MDD and other stress-related illnesses, and the understanding of the etiological mechanisms underpinning stress-sensitivity

    Genetic Overlap Profiles of Cognitive Ability in Psychotic and Affective Illnesses: A Multisite Study of Multiplex Pedigrees

    Get PDF
    Background: Cognitive impairment is a key feature of psychiatric illness, making cognition an important tool for exploring of the genetics of illness risk. It remains unclear which measures should be prioritized in pleiotropy-guided research. Here, we generate profiles of genetic overlap between psychotic and affective disorders and cognitive measures in Caucasian and Hispanic groups. Methods: Data were from 4 samples of extended pedigrees (N = 3046). Coefficient of relationship analyses were used to estimate genetic overlap between illness risk and cognitive ability. Results were meta-analyzed. Results: Psychosis was characterized by cognitive impairments on all measures with a generalized profile of genetic overlap. General cognitive ability shared greatest genetic overlap with psychosis risk (average endophenotype ranking value [ERV] across samples from a random-effects meta-analysis = 0.32), followed by verbal memory (ERV = 0.24), executive function (ERV = 0.22), and working memory (ERV = 0.21). For bipolar disorder, there was genetic overlap with processing speed (ERV = 0.05) and verbal memory (ERV = 0.11), but these were confined to select samples. Major depressive disorder was characterized by enhanced working and face memory performance, as reflected in significant genetic overlap in 2 samples. Conclusions: There is substantial genetic overlap between risk for psychosis and a range of cognitive abilities (including general intelligence). Most of these effects are largely stable across of ascertainment strategy and ethnicity. Genetic overlap between affective disorders and cognition, on the other hand, tends to be specific to ascertainment strategy, ethnicity, and cognitive test battery

    Measuring social-emotional development in middle childhood: the Middle Years Development Instrument

    Full text link
    This paper discusses the conceptualization, development, validation, and application of the Middle Years Development Instrument (MDI) – a population-based child self-report tool that assesses children\u27s social-emotional development and well-being in the context of their home, school, and neighborhood. The MDI is administered at a population-level to 4th and 7th grade students within participating public school districts across British Columbia, Canada. Children respond to items in five domains: (1) social-emotional development, (2) connectedness to peers and adults, (3) school experiences, (4) physical health and well-being, and (5) constructive use of after-school time. Results are aggregated for schools and communities and reported back in comprehensive reports and community maps to inform planning and decision making at local and regional levels. Shared testimonials exemplify how MDI results have been used by educators, community organizers, and city planners as a catalyst for promoting children\u27s social and emotional competence and facilitating collaboration between schools and communities

    Rediscovering the value of families for psychiatric genetics research

    Get PDF
    As it is likely that both common and rare genetic variation are important for complex disease risk, studies that examine the full range of the allelic frequency distribution should be utilized to dissect the genetic influences on mental illness. The rate limiting factor for inferring an association between a variant and a phenotype is inevitably the total number of copies of the minor allele captured in the studied sample. For rare variation, with minor allele frequencies of 0.5% or less, very large samples of unrelated individuals are necessary to unambiguously associate a locus with an illness. Unfortunately, such large samples are often cost prohibitive. However, by using alternative analytic strategies and studying related individuals, particularly those from large multiplex families, it is possible to reduce the required sample size while maintaining statistical power. We contend that using whole genome sequence (WGS) in extended pedigrees provides a cost-effective strategy for psychiatric gene mapping that complements common variant approaches and WGS in unrelated individuals. This was our impetus for forming the “Pedigree-Based Whole Genome Sequencing of Affective and Psychotic Disorders” consortium. In this review, we provide a rationale for the use of WGS with pedigrees in modern psychiatric genetics research. We begin with a focused review of the current literature, followed by a short history of family-based research in psychiatry. Next, we describe several advantages of pedigrees for WGS research, including power estimates, methods for studying the environment, and endophenotypes. We conclude with a brief description of our consortium and its goals

    Biodiversity of 52 chicken populations assessed by microsatellite typing of DNA pools

    Get PDF
    In a project on the biodiversity of chickens funded by the European Commission (EC), eight laboratories collaborated to assess the genetic variation within and between 52 populations from a wide range of chicken types. Twenty-two di-nucleotide microsatellite markers were used to genotype DNA pools of 50 birds from each population. The polymorphism measures for the average, the least polymorphic population (inbred C line) and the most polymorphic population (Gallus gallus spadiceus) were, respectively, as follows: number of alleles per locus, per population: 3.5, 1.3 and 5.2; average gene diversity across markers: 0.47, 0.05 and 0.64; and proportion of polymorphic markers: 0.91, 0.25 and 1.0. These were in good agreement with the breeding history of the populations. For instance, unselected populations were found to be more polymorphic than selected breeds such as layers. Thus DNA pools are effective in the preliminary assessment of genetic variation of populations and markers. Mean genetic distance indicates the extent to which a given population shares its genetic diversity with that of the whole tested gene pool and is a useful criterion for conservation of diversity. The distribution of population-specific (private) alleles and the amount of genetic variation shared among populations supports the hypothesis that the red jungle fowl is the main progenitor of the domesticated chicken

    DNA sequence level analyses reveal potential phenotypic modifiers in a large family with psychiatric disorders

    Get PDF
    Psychiatric disorders are a group of genetically related diseases with highly polygenic architectures. Genome-wide association analyses have made substantial progress towards understanding the genetic architecture of these disorders. More recently, exome- and whole-genome sequencing of cases and families have identified rare, high penetrant variants that provide direct functional insight. There remains, however, a gap in the heritability explained by these complementary approaches. To understand how multiple genetic variants combine to modify both severity and penetrance of a highly penetrant variant, we sequenced 48 whole genomes from a family with a high loading of psychiatric disorder linked to a balanced chromosomal translocation. The (1;11)(q42;q14.3) translocation directly disrupts three genes: DISC1, DISC2, DISC1FP and has been linked to multiple brain imaging and neurocognitive outcomes in the family. Using DNA sequence-level linkage analysis, functional annotation and population-based association, we identified common and rare variants in GRM5 (minor allele frequency (MAF) > 0.05), PDE4D (MAF > 0.2) and CNTN5 (MAF < 0.01) that may help explain the individual differences in phenotypic expression in the family. We suggest that whole-genome sequencing in large families will improve the understanding of the combined effects of the rare and common sequence variation underlying psychiatric phenotypes

    Genetic Overlap Profiles of Cognitive Ability in Psychotic and Affective Illnesses::A Multi-Site Study of Multiplex Pedigrees

    Get PDF
    BACKGROUND: Cognitive impairment is a key feature of psychiatric illness, making cognition an important tool for exploring of the genetics of illness risk. It remains unclear which measures should be prioritized in pleiotropy-guided research. Here, we generate profiles of genetic overlap between psychotic and affective disorders and cognitive measures in Caucasian and Hispanic groups. METHODS: Data were from four samples of extended pedigrees (N = 3046). Coefficient of relationship analyses were used to estimate genetic overlap between illness risk and cognitive ability. Results were meta-analyzed. FINDINGS: Psychosis was characterized by cognitive impairments on all measures with a generalized profile of genetic overlap. General cognitive ability shared greatest genetic overlap with psychosis risk (average Endophenotype Ranking Value (ERV) across samples from a random-effects meta-analysis = 0.32) followed by Verbal Memory (ERV = 0.24), Executive Function (ERV = 0.22), and Working Memory (ERV = 0.21). For bipolar disorder, there was genetic overlap with Processing Speed (ERV = 0.05) and Verbal Memory (ERV = 0.11), but these were confined to select samples. Major depression was characterized by enhanced Working and Face Memory performance, as reflected in significant genetic overlap in two samples. INTERPRETATION: There is substantial genetic overlap between risk for psychosis and a range of cognitive abilities (including general intelligence). Most of these effects are largely stable across of ascertainment strategy and ethnicity. Genetic overlap between affective disorders and cognition, on the other hand, tend to be specific to ascertainment strategy, ethnicity, and cognitive test battery

    PKA Phosphorylation of NDE1 Is DISC1/PDE4 Dependent and Modulates Its Interaction with LIS1 and NDEL1

    Get PDF
    Nuclear distribution factor E-homolog 1 (NDE1), Lissencephaly 1 (LIS1), and NDE-like 1 (NDEL1) together participate in essential neurodevelopmental processes, including neuronal precursor proliferation and differentiation, neuronal migration, and neurite out-growth. NDE1/LIS1/NDEL1 interacts with Disrupted in Schizophrenia 1 (DISC1) and the cAMP-hydrolyzing enzyme phosphodiesterase 4 (PDE4). DISC1, PDE4, NDE1, and NDEL1 have each been implicated as genetic risk factors for major mental illness. Here, we demonstrate that DISC1 and PDE4 modulate NDE1 phosphorylation by cAMP-dependent protein kinase A (PKA) and identify a novel PKA substrate site on NDE1 at threonine-131 (T131). Homology modeling predicts that phosphorylation at T131 modulates NDE1–LIS1 and NDE1–NDEL1 interactions, which we confirm experimentally. DISC1–PDE4 interaction thus modulates organization of the NDE1/NDEL1/LIS1 complex. T131-phosphorylated NDE1 is present at the postsynaptic density, in proximal axons, within the nucleus, and at the centrosome where it becomes substantially enriched during mitosis. Mutation of the NDE1 T131 site to mimic PKA phosphorylation inhibits neurite outgrowth. Thus PKA-dependent phosphorylation of the NDE1/LIS1/NDEL1 complex is DISC1–PDE4 modulated and likely to regulate its neural functions

    Haplotype-based association analysis of general cognitive ability in Generation Scotland, the English Longitudinal Study of Ageing, and UK Biobank

    Get PDF
    Background: Cognitive ability is a heritable trait with a polygenic architecture, for which several associated variants have been identified using genotype-based and candidate gene approaches. Haplotype-based analyses are a complementary technique that take phased genotype data into account, and potentially provide greater statistical power to detect lower frequency variants. Methods: In the present analysis, three cohort studies (ntotal = 48,002) were utilised: Generation Scotland: Scottish Family Health Study (GS:SFHS), the English Longitudinal Study of Ageing (ELSA), and the UK Biobank. A genome-wide haplotype-based meta-analysis of cognitive ability was performed, as well as a targeted meta-analysis of several gene coding regions. Results: None of the assessed haplotypes provided evidence of a statistically significant association with cognitive ability in either the individual cohorts or the meta-analysis. Within the meta-analysis, the haplotype with the lowest observed P-value overlapped with the D-amino acid oxidase activator (DAOA) gene coding region. This coding region has previously been associated with bipolar disorder, schizophrenia and Alzheimer’s disease, which have all been shown to impact upon cognitive ability. Another potentially interesting region highlighted within the current genome-wide association analysis (GS:SFHS: P = 4.09 x 10-7), was the butyrylcholinesterase (BCHE) gene coding region. The protein encoded by BCHE has been shown to influence the progression of Alzheimer’s disease and its role in cognitive ability merits further investigation. Conclusions: Although no evidence was found for any haplotypes with a statistically significant association with cognitive ability, our results did provide further evidence that the genetic variants contributing to the variance of cognitive ability are likely to be of small effect
    • …
    corecore