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Abstract 1 
 2 

Background 3 
Cognitive impairment is a key feature of psychiatric illness, making cognition an important tool 4 
for exploring of the genetics of illness risk. It remains unclear which measures should be 5 
prioritized in pleiotropy-guided research. Here, we generate profiles of genetic overlap between 6 
psychotic and affective disorders and cognitive measures in Caucasian and Hispanic groups. 7 
 8 
Methods 9 
Data were from four samples of extended pedigrees (N = 3046). Coefficient of relationship 10 
analyses were used to estimate genetic overlap between illness risk and cognitive ability. Results 11 
were meta-analyzed. 12 
 13 
Findings 14 
Psychosis was characterized by cognitive impairments on all measures with a generalized profile 15 
of genetic overlap. General cognitive ability shared greatest genetic overlap with psychosis risk 16 
(average Endophenotype Ranking Value (ERV) across samples from a random-effects meta-17 
analysis = 0.32) followed by Verbal Memory (ERV = 0.24), Executive Function (ERV = 0.22), and 18 
Working Memory (ERV = 0.21). For bipolar disorder, there was genetic overlap with Processing 19 
Speed (ERV = 0.05) and Verbal Memory (ERV = 0.11), but these were confined to select samples. 20 
Major depression was characterized by enhanced Working and Face Memory performance, as 21 
reflected in significant genetic overlap in two samples. 22 
 23 
Interpretation 24 
There is substantial genetic overlap between risk for psychosis and a range of cognitive abilities 25 
(including general intelligence). Most of these effects are largely stable across of ascertainment 26 
strategy and ethnicity. Genetic overlap between affective disorders and cognition, on the other 27 
hand, tend to be specific to ascertainment strategy, ethnicity, and cognitive test battery. 28 
 29 
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Introduction 1 
Genomic variation substantially impacts risk for developing psychiatric illnesses, with heritability 2 
(h2) estimates in the range of 0.4–0.8 (1). Recently, large-scale consortia have made tremendous 3 
strides to assemble large case-control samples (2). However, most of the genetic architecture of 4 
psychiatric disorders remains unclear (3). A complementary approach, which may provide 5 
additional insight, is to identify behaviors that overlap genetically with risk for psychiatric illness, 6 
which may also provide a rubric for prioritization of measures to be included in future research.  7 
 8 
Cognitive abilities, which are heritable, have been frequently investigated in terms of their 9 
genetic overlap with psychiatric illness (4). However, important questions remain unanswered 10 
regarding these relationships. First, why do estimates of genetic overlap between cognitive 11 
abilities and psychiatric illness vary so considerably between studies? Prior research on this 12 
topic has mostly been conducted using family studies—either classic twin designs or extended 13 
pedigree designs—or by leveraging single-nucleotide polymorphism (SNP) data in unrelated 14 
individuals. Genetic correlations estimated via twin designs tend to be high (5), leading some to 15 
argue that they may be overestimates  (6). SNP-based methods were introduced partly due to 16 
the perceived drawbacks of twin designs and to squeeze more signal from genome-wide 17 
association (GWA) data (7). However, important limitations of the SNP-based approach are that 18 
SNPs do not capture the full range of genetic variation (3) and that most approaches do not 19 
adequately account for linkage disequilibrium and variation in allele frequency (8). Pedigree 20 
designs may be well placed to provide a definitive answer to the degree of genetic overlap 21 
between risk for psychiatric illness and cognitive ability because (1) there is less confounding of 22 
genetic and shared environmental effects in pedigree than twin designs; (2) pedigree designs do 23 
not rely on population-level information regarding LD and allele frequency; and (3) pedigree 24 
designs are robust to population stratification (9).  25 
 26 
A second question pertains to the use of broad composite measures of cognitive ability rather 27 
than specific domains or measures. General cognitive ability, or g, is a robust phenotype (10-12). 28 
However, g is a distillate of what is common across cognitive tests and is insensitive to specific 29 
sources of cognitive impairment. This is unlikely to be a problem for studies of psychotic 30 
disorders, which are associated with general cognitive impairments (13), but may be 31 
problematic for studies of affective disorders, since their cognitive profile is characterized by 32 
selective impairments (14). Selection of correct cognitive phenotypes is critical for the detection 33 
and interpretation of genetic overlap between psychiatric illnesses and cognition.  34 
 35 
A third issue is that prior research efforts are heavily skewed toward psychosis. This is partly 36 
because cognitive impairment is considered a core feature of psychosis (13). While impairments 37 
are observed for major depression (MD) (15) and bipolar disorder  (16), they are less severe. 38 
Moreover, gene discovery for affective disorders has lagged behind psychosis. Genome-wide 39 
significant hits have recently emerged in large samples for affective disorders, the phenotypic 40 
specificity in such large samples tends to be low (17). Extended designs cannot compete with 41 
GWA consortia in terms of sample size; however, it is likely that carefully conducted and 42 
ascertained pedigree studies will have more reliable and detailed phenotypes.  43 
 44 
In the present study, we meta-analyzed four large extended pedigree samples (total N = 3046) 45 
to examine the genetic overlap between risk for psychiatric illness and cognitive ability. We 46 
generated profiles of genetic overlap, which provide rapid and clear understanding of the 47 



direction and magnitude of pleiotropy between multiple cognitive domains and psychiatric 1 
illnesses. The included samples span multiple disorders, international sites, ethnicities, and 2 
ascertainment strategies. Using this approach, we attempted to answer the following questions: 3 
(1) Are profiles of genetic overlap similar within disorders across sites (and by extension, 4 
ethnicities and ascertainment strategies)? (2) Are profiles similar across disorders within/across 5 
sites? (3) Are profiles for psychotic and affective disorders similarly generalized, or are there 6 
stronger overlaps for specific measures or domains in the latter? The answers provide guidance 7 
for future work aiming to more deeply phenotype cognition and psychiatric disorders. 8 
 9 

Methods and Materials 10 
Samples 11 
Data comprised four samples (Costa Rican, Mexican American, Pennsylvanian and Western 12 
Australian; see Supplemental Materials and Tables S1-4) with cognitive and genotype data in 13 
healthy individuals and individuals with psychotic and affective disorders. Two were of Hispanic 14 
ancestry (Costa Rican and Mexican American) and two were European Caucasian (Pennsylvanian 15 
and Western Australian). These samples represent the subset of the Whole Genome Sequencing 16 
in Psychiatric Disorders (WGSPD) consortium (9) with cognitive data. The total sample size was 17 
3046, including 191, 96, and 771 patients with psychosis, BP, and MD, respectively. Broad 18 
diagnostic categories were used in each instance (e.g. psychosis refers to any individual with a 19 
schizophrenia, schizoaffective, BP or MD with psychosis diagnosis, and BP refers to any 20 
individual with a BP I or BP II diagnosis without psychosis; Tables S5/6).  21 
 22 
Cognitive Assessments 23 
Cognitive tests varied across samples, but the breadth of assessments permitted evaluation of 24 
genetic overlap between measures spanning multiple cognitive domains, plus g (see 25 
Supplemental Materials), with risk for psychiatric illness (Table S7).  26 
 27 
Phenotypic Effect of Diagnosis on Cognition 28 
Group differences for each diagnosis were calculated for all cognitive measures in each site 29 
using standardized mean differences (SMDs) and the absolute values were meta-analyzed using 30 
the rma function from the metaphor (18) package in R (19). 31 
 32 
Heritability Analysis 33 
Univariate variance components analyses of cognitive measures (including g) were performed in 34 
SOLAR using genomic relatedness matrices that were empirically estimated (see Supplemental 35 
Materials) (20). Age, age2, sex and their interactions were included as covariates.  36 
 37 
Coefficient-of-Relatedness Analysis 38 
In samples ascertained for a particular illness it is usually necessary to apply a correction to 39 
avoid biasing estimation of h2. This was not necessary here because we did not explicitly model 40 
h2 of illness risk but instead estimated h2 of each cognitive measure and included a coefficient of 41 
relatedness (CoR) as a covariate. CoR analysis leverages the many coefficients of relationship 42 
that exist between individuals in extended pedigrees to explore the genetic relationship 43 
between a phenotype and a disease when the disease is not sufficiently common in the sample 44 
to estimate its heritability (see Supplemental Materials). Here, CoR analysis was applied using 45 
cognitive measures as phenotypes and psychosis, BP, and MD as diseases. Age, age2, sex and 46 
their interactions were included as covariates. False discovery rate (FDR) was set at 5% (21). 47 
 48 



Profiles of Genetic Overlap 1 
The regression coefficient corresponding to the CoR, denoted by β, can be converted to a mean-2 
based endophenotype ranking value (ERV). ERV is an index of genetic overlap that varies 3 
between 0 and 1, higher values indicate that the endophenotype and the illness have greater 4 
genetic overlap (22). First, we graphed β estimates from the above analyses, grouping by 5 
disorder across samples. Second, we converted βs to ERVs and pooled them using the metacor 6 
function from the meta package in R (23) (see Supplemental Material). Finally, we ranked 7 
cognitive measures by ERV within site.  8 
 9 

Results 10 
Sample Description 11 
Demographics, clinical characteristics, and numbers of kinship pairings (>0.01) available for each 12 
diagnosis, are summarized in Tables S5 and S6. Across all samples, mean age = 42.57 years (sd = 13 
16.43) and 54.17% were female.  14 
 15 
Phenotypic Effect of Diagnosis on Cognition 16 
Effect sizes for differences in performance on cognitive measures between cases and controls 17 
are shown in Tables S8-10, which are ordered by ERV.  18 
 19 
For psychosis (Table S8), cognitive impairments were wide ranging (range of absolute 20 
Standardized Mean Difference (SMD) = 0.15-1.20). g was ranked in the top-three for all sites, 21 
and top in the Pennsylvanian and Western Australian sites. In the Mexican American and Costa 22 
Rican samples, the greatest difference for psychosis were the Verbal Memory measure CVLT and 23 
Executive Function measure PCET respectively. Meta-analysis of these effects (Figure S1) for 24 
psychosis indicated that the largest difference observed across sites was for g (SMD = 1.02) with 25 
consistent effects observable for all measures with the exception of Executive Function, which 26 
was subject to heterogeneity. 27 
 28 
For BP (Table S9) and MD (Table S10), a handful of cognitive impairments and improvements 29 
were observed (Figures S2 and S3 show meta-analyses). For BP, the range of absolute SMDs = 0-30 
1.18. In the Pennsylvanian and Costa Rican samples, the greatest impairments for BP were for 31 
the Verbal Memory measure the CVLT. The following improvements were observed for BP 32 
cases: Digit Span Backward in the Mexican American sample; Digit Span Forward in the Costa 33 
Rican sample; and Emotion Recognition in the Pennsylvanian sample. The phenotypic results for 34 
psychosis and BP, in particular in the Western Australian sample, should be interpreted with the 35 
caveat that they are based on a small number of cases. These results have been included for the 36 
sake of completeness and consistency across disorders. 37 
 38 
For MD, small to moderate impairments were observed in most samples (range of absolute SMD 39 
= 0.10-0.62). In the Mexican American sample, the largest impairment was for the Digit Span 40 
Forward. In the Costa Rican sample, the largest difference was for Facial Memory, where cases 41 
outperformed controls. In the Pennsylvanian and Western Australian samples, MD cases 42 
exhibited higher scores than controls on all tasks. For the Pennsylvanian sample, the greatest 43 
difference was on Facial Memory followed by g. For the Western Australian sample, the greatest 44 
difference was for Verbal Memory followed by g (see Supplemental Materials for meta-45 
analyses). 46 
 47 
Heritability of Cognitive Measures 48 



Heritability estimates for all tests were small to moderate (Figure S4). Tests that were measured 1 
across different sites tended to demonstrate similar strength of heritability estimate, suggesting 2 
that h2 is similar across ethnicities and ascertainment. 3 
 4 
Coefficient of Relatedness Analysis: Generating Profiles of Genetic Overlap 5 
Significant genetic overlaps, indexed by the ERV, were observed between most cognitive 6 
abilities and psychosis risk across sites (Figure 1). Measures were ranked by ERV in each site 7 
(Table S8). In terms of similarities between sites (and, by extension, ethnicities and 8 
ascertainment strategies), the direction of ERV effects were the same irrespective of site, 9 
indicating that genetic liability was associated with worse performance on all measures. In all 10 
sites, g was ranked in the top three. A number of those measures that survived FDR correction 11 
(Figure 2) were present in at least two sites, including the: the Digit Span Forward; Executive 12 
Function measure the PCET; CVLT and RAVLT; Emotion Recognition; Attention measure the CPT. 13 
Thus, Verbal Memory and Working Memory ranked highly in samples of differing ethnicity and 14 
ascertainment strategies. Table 1 shows the results of a meta-analysis of ERV estimates grouped 15 
by domain and ranked by magnitude of effect. The meta-analysis underscored that some 16 
domains demonstrated greater genetic overlap with psychosis risk than others (e.g. g and Verbal 17 
Memory). The Q-statistic, an index of heterogeneity of observed effects, is informative here, 18 
since a significant Q-value indicates that domains were affected differently in different sites. For 19 
example, Verbal Memory is ranked second but variation in effect size attributable to 20 
heterogeneity was high indicating that similar effects were not observed in all sites. Consistent 21 
effects (i.e. with minimal heterogeneity) were observed for g, Working Memory and Emotion 22 
Identification.  23 
 24 
Compared to psychosis, neither risk for BP nor MD demonstrated the same wide-ranging profile 25 
genetic overlap with cognition but some specific associations were observed. For BP (Table S9; 26 
Figure 3) performance on the: Semantic Fluency task demonstrated genetic overlap in the Costa 27 
Rican and Mexican American samples; the Facial Memory Delayed task in the Costa Rican 28 
sample; and on Verbal Memory (CVLT/RAVLT) tasks in the Mexican American, Pennsylvanian 29 
and Western Australian samples. In most instances, increased genetic proximity to an individual 30 
with BP resulted in a decrement in performance. However, no genetic overlap between BP and 31 
any cognitive measure were significant after FDR correction (Figure 4).   32 
 33 
Risk for MD (Table S10) demonstrated genetic overlap with multiple cognitive measures (Figure 34 
3), a number of which withstood FDR correction (Figure 5), which were specific to particular 35 
samples. These included the Facial Memory measures in the Costa Rican and Pennsylvanian 36 
samples, where increased genetic proximity to MD improved performance. The same direction 37 
of relations was observed for g in the Pennsylvanian and Western Australian samples, Spatial 38 
Memory (SCAP), and Attention (CPT) in the Pennsylvanian sample, and Verbal Memory (RAVLT) 39 
in the Western Australian sample.  40 
 41 
Effect of Sex on Genetic Overlap Between Depression and Cognition 42 
At the suggestion of one of the reviewers we explored whether the genetic overlap observed 43 
between MD and cognition might vary by sex. We tested the significance of an interaction term 44 
between genetic risk for MD (indexed by the CoR utilized in previous analysis) and sex in the 45 
univariate polygenic model of each cognitive measure. This analysis was restricted to those 46 
measures with ERVs withstanding FDR correction (Figure 5). The supplemental material contains 47 
the results of these analysis (Table S11). Two of the measures, Facial Memory Delayed (β = -48 



0.65, p = 0.02) in the Costa Rican sample and Attention measure the CPT (β = -0.47, p = 0.04) in 1 
the Pennsylvanian sample, demonstrated nominally significant interactions between sex and 2 
genetic liability for MD indexed by a CoR, indicating that the relationship between genetic 3 
liability for MD and performance on these measures is somewhat stronger in men than in 4 
women.  5 
 6 

Discussion 7 
We report profiles of genetic overlap, indexed by the ERV, between cognitive ability spanning 8 
multiple domains and risk for psychiatric illness in four extended-pedigree datasets that span 9 
multiple ascertainment strategies, psychiatric illnesses, and ethnicities. This is a comprehensive 10 
study of the genetic link between cognition and risk for psychiatric illness in related individuals. 11 
Results provide insight at the epidemiological level (i.e. the phenotypic relationship) and are 12 
mechanistically informative (i.e. the genetic relationship). Not all findings are novel, however 13 
the present manuscript offers a holistic view, allowing a direct comparison of findings across 14 
research designs and ethnicities. 15 
While GWA studies have identified numerous genomic loci that contribute to risk for psychotic 16 
and affective disorders (24) much of their genetic architectures remain unclear (3). Cognitive 17 
endophenotypes have the potential to provide increased understanding of the genetic 18 
determinants of the psychiatric illnesses (25, 26). In future research, prioritization of which 19 
cognitive measures to include is of utmost importance. Much is known regarding the phenotypic 20 
overlap between certain disorders and cognitive measures, however the following question 21 
remains unanswered: which measures are most likely to yield further genomic insight into 22 
psychiatric illness? This question is particularly important given that efficacious phenotyping is a 23 
practical requirement for the type of large-scale data collection necessary for gene identification 24 
(27). Despite the established importance of pleiotropy in improving understanding of disease 25 
pathogenesis, not to mention its potential for genetic risk profiling, few studies have 26 
systematically investigated the extent of pleiotropy between psychiatric disease risk and other 27 
complex traits, including cognition (28, 29). The present study attempts to provide a rubric for 28 
future studies by creating profiles of genetic overlap between psychotic and affective disorder 29 
risk and a wide range of cognitive measures. 30 
In the present study univariate h2 estimates of cognitive ability are in line with what has 31 
previously been reported in the literature. Generally, h2estimates for g are moderate to high, 32 
varying between 40-.80 (30), in the present study estimates for g were between 0.46-0.67. In 33 
the literature the h2of individual cognitive measures vary from low to high, depending on the 34 
measure in question, this is also what we observed in the present study (Table 2).  35 
Our observed pattern of cognitive impairments in psychosis patients is consistent with previous 36 
research (13), with broad ranging decrements in performance across domains. In each site, 37 
increased genetic liability for psychosis was associated with lower cognitive performance. While 38 
the precise ordering of measures varied between samples, there were similarities, suggesting 39 
that some tests were more robustly associated with psychosis liability than others. g was in the 40 
top-three of measures ranked by degree of genetic overlap (as indexed by the ERV). Also, the 41 
genetic overlap for Verbal Memory (indexed via the CVLT and the RAVLT) and psychosis liability 42 
survived multiple-testing correction in three of the four samples. One of these samples (Costa 43 
Rican, of Hispanic ancestry) had a focus on BP in terms of ascertainment strategy, while the 44 
other two (Pennsylvanian and Western Australian, of European ancestry) primarily recruited 45 
schizophrenia patients. Other overlaps that replicated across sites included Working Memory 46 



measures (Digit Span Forward, Digit Span Backward and Letter Number Sequencing) and the 1 
Executive Function measure PCET; similar to the effects observed for Verbal Memory, these 2 
effects were observed irrespective of ancestry and psychosis ascertainment.  3 
While the genetic overlap between psychosis risk and cognitive ability is well established, the 4 
replication of genetic overlap between psychosis risk and specific cognitive tests across multiple 5 
samples of extended pedigrees is novel. Cognitive impairment is a particularly pernicious aspect 6 
of psychosis, contributing directly to the social isolation and functional impairments (13); 7 
unfortunately, there are no approved treatments for cognitive impairment in psychosis. 8 
Isolating the mechanisms by which cognitive impairment arises in psychosis will be important if 9 
treatments are to be identified. Our findings highlight that researchers wishing to utilize 10 
cognition as an enhancer of genetic signal for psychosis risk g is best. However, in a situation 11 
where brevity of assessment is key then a focus on some combination of Verbal and Working 12 
Memory and Executive Function is key. Pleiotropic discoveries such as this can help inform 13 
research that aims to identify shared biological pathways and prioritize probable causal 14 
relationships (31). It was surprising that Processing Speed measures (e.g. the Digit Symbol 15 
Substitution Task; DSST) did not demonstrate greater genetic overlap with psychosis risk. 16 
Numerous meta-analytic studies suggest that processing speed is the single largest cognitive 17 
impairment in schizophrenia (32). It is possible that, in the present sample, differences at the 18 
phenotypic level between cases and controls on processing-speed performance and psychosis 19 
risk were not influenced by the same genetic influences, but rather are influenced by shared 20 
environmental or state dependent factors. At the very least, the results of the present study 21 
suggest that measures of processing speed might not take precedence over other more highly 22 
ranked domains and/or measures in genetic-pleiotropy informed research in the future (33). 23 
Importantly, this is not to say that processing speed might not be informative from a clinical 24 
standpoint. 25 
Differences in genetic overlap profiles between psychotic and affective disorders might be 26 
considered strange given than numerous studies point to overlap in the genetic loci that 27 
predispose risk for these disorders (34), the reasoning being that if the genetics of the disorders 28 
are similar then the ordering of genetic overlap between cognitive abilities should also be 29 
similar. However, differing profiles make sense. First, the genetic correlation between liabilities 30 
for psychotic and affective disorders is partial (1, 35), allowing for differences in genetic overlap 31 
profiles in cognition. Second, these disorders have a high degree of clinical overlap (36), and any 32 
genetic overlap might pertain to this rather than similarities in cognitive impairments per se. 33 
Third, specific SNPs that influence cognitive ability in both, for example, bipolar and psychosis, 34 
might still be expressed at the phenotypic level in a differing manner (37). Differential 35 
phenotypic expression might be tied to molecular mechanisms (e.g. epistasis of non-overlapping 36 
genetic influences) or the ways in which such alterations fit within the clinical picture. 37 
An unexpected finding was that MD cases demonstrated elevated performance on some 38 
measures and that those differences appeared to be genetically mediated. In two sites (Costa 39 
Rican and Pennsylvanian), performance was better in MD cases than in controls on Facial 40 
Memory tasks, effects that were matched by positive and significant genetic overlaps. The Facial 41 
Memory task presents participants with images of faces with neutral affect, followed by a 42 
testing period where the original faces are presented alongside foils, and participants indicate 43 
which faces they recognize (38). Facial memory is considered a neurally and cognitively 44 
dissociable trait from general cognitive ability (39). The brain has highly specialized regions and 45 
networks that are preferentially activated by faces (40, 41). It has been postulated that these 46 



neural underpinnings, which support this specialized ability, are specifically evolved in humans 1 
for the purpose of face recognition because it is such a crucial skill for human social interaction 2 
(42). We are not the first to find that depressed mood is associated with enhanced face-memory 3 
ability. Healthy participants that are induced to feel sad outperform those that feel happy or 4 
neutral on Facial Memory tasks (43). One explanation of this apparent advantage in MD cases 5 
for Facial Memory is that depressed mood can give rise to attentional biases that benefit the 6 
processing of negative stimuli i.e. a mood-congruency bias (44-46). The stimuli in the Face 7 
Memory task used in the present study are neutral, which can be interpreted negatively (47). 8 
However, a mood-congruency bias is unlikely to explain our results. The presence of a positive 9 
genetic overlap in addition to a phenotypic effect strongly suggests that enhanced performance 10 
of depressed individuals on the Facial Memory tasks is driven by trait- and not state-dependent 11 
mechanisms; that is, a subset of the biological mechanisms which predispose MD risk also 12 
mediate performance on these measures. The present work suggests that a circumspect 13 
approach to cognitive test selection may be advantageous for MD research, where Facial 14 
Memory is a potential endophenotype. Interestingly, despite the increased liability of MD in 15 
women (48), and the apparent face memory advantage conferred by being female (49), the link 16 
between increased genetic liability for MD and enhanced performance on the Facial Memory 17 
task was more pronounced in men in the Costa Rican sample. Thus, in some populations Facial 18 
Memory may be a better allied phenotype for MD in men than in women. The present study is 19 
not designed to test such hypotheses but generates testable hypotheses pertaining to this issue 20 
for future work.   21 
When interpreting the results of the present study, a number of limitations should be 22 
considered. First, associations between cognition and, for example, psychosis risk may be 23 
confounded by environmental factors (e.g. in the familial environment). Second, we were 24 
required to rely on high-level diagnostic categories rather than being able to make inferences 25 
based on symptom-level data that would have enabled the demarcation of subgroups of 26 
disorders (including age of onset, illness severity and so on). There is growing evidence that fine-27 
grained diagnostic phenotyping in genetics research is crucial for reliability and validity of 28 
reported associations (50). Third, this observational study is best described as correlational and 29 
as such does not allow us to make causal inferences about the impact of cognitive ability on risk 30 
of psychiatric illness. Fourth, the mechanistic insights provided by the present study are limited 31 
by the lack of SNP-level information, which might be used to reveal the involvement of specific 32 
genes and, by extension, molecular pathways in psychiatric illness risk. Fifth, the phenotypic 33 
relationship (i.e. the SMDs between cases and controls on cognitive performance) are, in some 34 
cases, based on a small number of cases.  35 
Despite differences in each dataset’s design and population, we identified cognitive measures 36 
that converge in terms of importance for particular psychiatric disorders from a genetic 37 
perspective. Results are important given that efficacious phenotyping is a practical requirement 38 
for the type of large-scale data collection necessary for gene identification. Despite the 39 
established importance of pleiotropy (overlapping genetic influences on traits) in improving 40 
understanding of disease pathogenesis, not to mention its potential for genetic risk profiling, 41 
few studies have systematically investigated the extent of pleiotropy between psychiatric 42 
disease risk and other complex traits, including cognition. The present study attempts to provide 43 
a rubric for future studies by creating profiles of genetic overlap between psychotic and 44 
affective disorder risk and a wide range of cognitive measures. Overall, the present study 45 
provides future directions for etiological psychiatric research with a genetic focus by highlighting 46 



which cognitive measures are most likely to prove fruitful when paired with psychotic and 1 
affective illnesses.  2 
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Figure Legends 1 
 2 
Figure 1. mERV β estimates for psychosis (CR = Costa Rican; MA = Mexican American; PA = 3 
Pennsylvanian; WA = Western Australian). 4 
 5 
Figure 2. Genetic overlap (or ERV) profiles for psychosis (*significant after multiple testing 6 
correction; CR = Costa Rican; MA = Mexican American; PA = Pennsylvanian; WA = Western 7 
Australian). 8 
 9 
Figure 3. mERV β estimates for bipolar (BP) and major depressive (MD) disorders (CR = Costa 10 
Rican; MA = Mexican American; PA = Pennsylvanian; WA = Western Australian). 11 
 12 
Figure 4. Genetic overlap (or ERV) profiles for bipolar (BP) and major depressive (MD) disorders 13 
(*significant after multiple testing correction; CR = Costa Rican; MA = Mexican American; PA = 14 
Pennsylvanian; WA = Western Australian). 15 
 16 
Figure 5. Genetic overlap (or ERV) profiles for major depressive disorder (*significant after 17 
multiple testing correction; CR = Costa Rican; MA = Mexican American; PA = Pennsylvanian; WA 18 
= Western Australian). 19 
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