1,890 research outputs found

    The Effect of Axial Compression and Distraction on Cervical Facet Cartilage Apposition During Shear and Bending Motions

    Get PDF
    During cervical spine trauma, complex intervertebral motions can cause a reduction in facet joint cartilage apposition area (CAA), leading to cervical facet dislocation (CFD). Intervertebral compression and distraction likely alter the magnitude and location of CAA, and may influence the risk of facet fracture. The aim of this study was to investigate facet joint CAA resulting from intervertebral distraction (2.5 mm) or compression (50, 300 N) superimposed on shear and bending motions. Intervertebral and facet joint kinematics were applied to multi rigid-body kinematic models of twelve C6/C7 motion segments (70 ± 13 year, nine male) with specimen-specific cartilage profiles. CAA was qualitatively and quantitatively compared between distraction and compression conditions for each motion; linear mixed-effects models (a = 0.05) were applied. Distraction significantly decreased CAA throughout all motions, compared to the compressed conditions (p<0.001), and shifted the apposition region towards the facet tip. These observations were consistent bilaterally for both asymmetric and symmetric motions. The results indicate that axial neck loads, which are altered by muscle activation and head loading, influences facet apposition. Investigating CAA in longer cervical spine segments subjected to quasistatic or dynamic loading may provide insight into dislocation and fracture mechanisms.Ryan D. Quarrington, Darcy W. Thompson-Bagsshaw and Claire F. Jone

    Single-filament Composite MgB2/SUS Ribbons by Powder-In-Tube Process

    Full text link
    We report the successful fabrication of single-filament composite MgB2/SUS ribbons, as an ultra-robust conductor type, employing the powder-in-tube (PIT) process, by swaging and cold rolling only. The remarkable transport critical current (Ic) of the non-sintered MgB2/SUS ribbon has observed, as an unexpected result. Transport critical currents Ic ~ 316 A at T = 4.2 K and Ic ~ 82 A at T = 20 K were observed at self-field, for the non-sintered composite MgB2/SUS ribbon. In addition, the persistent current density Jp values, that were estimated by Bean formula, were more than ~ 7 &#61620; 105 A/cm2 at T = 5 K, and ~ 1.2 &#61620; 105 A/cm2 at T = 30 K, for the sintered composite MgB2/SUS ribbon, at H = 0 G.Comment: 10 pages, 4 figure

    Pseudogap Formation in the Symmetric Anderson Lattice Model

    Full text link
    We present self-consistent calculations for the self-energy and magnetic susceptibility of the 2D and 3D symmetric Anderson lattice Hamiltonian, in the fluctuation exchange approximation. At high temperatures, strong f-electron scattering leads to broad quasiparticle spectral functions, a reduced quasiparticle band gap, and a metallic density of states. As the temperature is lowered, the spectral functions narrow and a pseudogap forms at the characteristic temperature TxT_x at which the width of the quasiparticle spectral function at the gap edge is comparable to the renormalized activation energy. For T<<TxT << T_x , the pseudogap is approximately equal to the hybridization gap in the bare band structure. The opening of the pseudogap is clearly apparent in both the spin susceptibility and the compressibility.Comment: RevTeX - 14 pages and 7 figures (available on request), NRL-JA-6690-94-002

    The Structural Response of the Human Head to a Vertex Impact.

    Get PDF
    OnlinePublIn experimental models of cervical spine trauma caused by near-vertex head-first impact, a surrogate headform may be substituted for the cadaveric head. To inform headform design and to verify that such substitution is valid, the force-deformation response of the human head with boundary conditions relevant to cervical spine head-first impact models is required. There are currently no biomechanics data that characterize the force-deformation response of the isolated head supported at the occiput and compressed at the vertex by a flat impactor. The effect of impact velocity (1, 2 or 3 m/s) on the response of human heads (N = 22) subjected to vertex impacts, while supported by a rigid occipital mount, was investigated. 1 and 2 m/s impacts elicited force-deformation responses with two linear regions, while 3 m/s impacts resulted in a single linear region and skull base ring fractures. Peak force and stiffness increased from 1 to 2 and 3 m/s. Deformation at peak force and absorbed energy increased from 1 to 2 m/s, but decreased from 2 to 3 m/s. The data reported herein enhances the limited knowledge on the human head's response to a vertex impact, which may allow for validation of surrogate head models in this loading scenario.Darcy W. Thompson, Bagshaw, Ryan D. Quarrington, Andrew M. Dwyer, Nigel R. Jones, Claire F. Jone

    The UKIDSS Galactic Plane Survey

    Get PDF
    'The definitive version is available at www.blackwell-synergy.com .' Copyright Blackwell Publishing DOI: 10.1111/j.1365-2966.2008.13924.xThe UKIDSS Galactic Plane Survey (GPS) is one of the five near-infrared Public Legacy Surveys that are being undertaken by the UKIDSS consortium, using the Wide Field Camera on the United Kingdom Infrared TelescopePeer reviewe

    Production and processing studies on calpain-system gene markers for tenderness in Brahman cattle: 2. Objective meat quality

    Get PDF
    Effects and interactions of calpain-system tenderness gene markers on objective meat quality traits of Brahman (Bos indicus) cattle were quantified within 2 concurrent experiments at different locations. Cattle were selected for study from commercial and research herds at weaning based on their genotype for cal-pastatin (CAST) and calpain 3 (GAPN3) gene markers for beef tenderness. Gene marker status for i-calpain (CAPN1-4751 and CAPN1-316) was also determined for inclusion in statistical analyses. Eighty-two heifer and 82 castrated male cattle with 0 or 2 favorable alleles for CAST and CAPN3 were studied in New South Wales (NSW), and 143 castrated male cattle with 0, 1, or 2 favorable alleles for CAST and CAPN3 were studied in Western Australia (WA). The cattle were backgrounded for 6 to 8 mo and grain-fed for 117 d (NSW) or 80 d (WA) before slaughter. One-half the cattle in each experiment were implanted with a hormonal growth promotant during feedlotting. One side of each carcass was suspended from the Achilles tendon (AT) and the other from the pelvis (tenderstretch). The M. longissimus lumborum from both sides and the M. semitendinosus from the AT side were collected; then samples of each were aged at 1°C for 1 or 7 d. Favorable alleles for one or more markers reduced shear force, with little effect on other meat quality traits. The size of effects of individual markers varied with site, muscle, method of carcass suspension, and aging period. Individual marker effects were additive as evident in cattle with 4 favorable alleles for CAST and CAPN3 markers, which had shear force reductions of 12.2 N (P 0.05) of interactions between the gene markers, or between the hormonal growth promotant and gene markers for any meat quality traits. This study provides further evidence that selection based on the CAST or CAPN3 gene markers improves meat tenderness in Brahman cattle, with little if any detrimental effects on other meat quality traits. The CAPN1-4751 gene marker also improved beef tenderness without affecting other objective meat quality traits in heterozygous cattle compared with homozygotes for the unfavorable allele

    Effects of rapid prey evolution on predator-prey cycles

    Full text link
    We study the qualitative properties of population cycles in a predator-prey system where genetic variability allows contemporary rapid evolution of the prey. Previous numerical studies have found that prey evolution in response to changing predation risk can have major quantitative and qualitative effects on predator-prey cycles, including: (i) large increases in cycle period, (ii) changes in phase relations (so that predator and prey are cycling exactly out of phase, rather than the classical quarter-period phase lag), and (iii) "cryptic" cycles in which total prey density remains nearly constant while predator density and prey traits cycle. Here we focus on a chemostat model motivated by our experimental system [Fussmann et al. 2000,Yoshida et al. 2003] with algae (prey) and rotifers (predators), in which the prey exhibit rapid evolution in their level of defense against predation. We show that the effects of rapid prey evolution are robust and general, and furthermore that they occur in a specific but biologically relevant region of parameter space: when traits that greatly reduce predation risk are relatively cheap (in terms of reductions in other fitness components), when there is coexistence between the two prey types and the predator, and when the interaction between predators and undefended prey alone would produce cycles. Because defense has been shown to be inexpensive, even cost-free, in a number of systems [Andersson and Levin 1999, Gagneux et al. 2006,Yoshida et al. 2004], our discoveries may well be reproduced in other model systems, and in nature. Finally, some of our key results are extended to a general model in which functional forms for the predation rate and prey birth rate are not specified.Comment: 35 pages, 8 figure
    • …
    corecore