241 research outputs found

    A Roadmap for Integrating Human Rights Into the World Bank Group

    Get PDF
    Offers a framework for linking effective international development and poverty reduction with human rights, including empowering communities to use the World Bank Group's grievance mechanisms. Outlines accomplishments, shortfalls, and recommendations

    Metal cluster hydrodesulfurization catalysts based on ternary molybdenum sulfides

    Get PDF
    Catalysts based on metal sulfide cluster compounds such as Chevrel phases (MxMo6S8) have been shown to possess high activity and selectivity for hydroprocessing reactions. Previous methods of preparing crystalline Chevrel phases have involved high temperature, solid-state synthetic routes which produce low surface area materials (0.1--1.0m2/gm). In our recent research, lower temperature syntheses via solution precursors have been explored as routes to these materials. The discovery of a new class of compounds, M2x/n n+(Mo6S8)Sx (n = 1--3) has resulted. These new reduced ternary molybdenum sulfides have been shown to have both high activity and selectivity in HDS reactions with thiophene, while also exhibiting initial surface areas near 200m2/gm. The stability and activity of these materials is dependent upon the pretreatment procedure. Surface area and porosity data have revealed a decrease in surface area and an increase in average pore size as the pretreatment temperature is increased. Temperature-programmed analysis studies were performed in conjunction with XPS to examine how the oxidation states change as a function of pretreatment temperature. The mechanism through which these new reduced ternary molybdenum sulfides convert to the crystalline Chevrel phase was also determined;The low temperature synthesis route of these new reduced molybdenum sulfides has allowed the synthesis of new cluster compounds, such as Pt(Mo6S8 )S. X-ray photoelectron spectroscopy, laser Raman spectroscopy, infrared spectroscopy and microprobe analysis indicate that this new material is structurally similar to other cluster compounds we have synthesized. Pretreatment of PtMoS in hydrogen at 950°C results in its conversion to the previously unknown crystalline Chevrel phase

    Passion, music, and psychological well-being

    Get PDF
    Passionate music engagement is a defining feature of music fans worldwide. Although benefits to psychosocial well-being are often experienced by fans of music, some fans experience maladaptive outcomes from their music engagement. The Dualistic Model of Passion proposes that two types of passion—harmonious and obsessive—are associated with positive and negative outcomes of passionate engagement, respectively. This model has been employed in research on passion for a wide range of pursuits including music performers, but not for passionate listeners. The present study employed this model to investigate whether (1) harmonious passion for music is associated with positive music listening experiences and/or psychological well-being and (2) obsessive passion for music is associated with negative music listening experiences and/or psychological ill-being. Passionate fans (n = 197) of 40 different musical genres were surveyed about their experiences when listening to their favorite music. Measures included the passion scale, affective experiences with music, and psychological well-being and ill-being. Results supported the Dualistic Model of Passion. Structural equation modeling revealed that harmonious passion for music predicted positive affective experiences which, in turn, predicted psychological well-being. Conversely, obsessive passion for music predicted negative affective experiences which, in turn, predicted psychological ill-being. The findings suggest that the nature of passionate engagement with music has an integral role in the psychological impact of music engagement and implications for the well-being of music fans.</p

    Indirect Legacy Effects of an Extreme Climatic Event on a Marine Megafaunal Community

    Get PDF
    While extreme climatic events (ECEs) are predicted to become more frequent, reliably predicting their impacts on consumers remains challenging, particularly for large consumers in marine environments. Many studies that do evaluate ECE effects focus primarily on direct effects, though indirect effects can be equally or more important. Here, we investigate the indirect impacts of the 2011 “Ningaloo Niño” marine heatwave ECE on a diverse megafaunal community in Shark Bay, Western Australia. We use an 18‐year community‐level data set before (1998–2010) and after (2012–2015) the heatwave to assess the effects of seagrass loss on the abundance of seven consumer groups: sharks, sea snakes (multiple species), Indo‐pacific bottlenose dolphins (Tursiops aduncus), dugongs (Dugong dugon), green turtles (Chelonia mydas), loggerhead turtles (Caretta caretta), and Pied Cormorants (Phalacrocorax spp.). We then assess whether seagrass loss influences patterns of habitat use by the latter five groups, which are under risk of shark predation. Sharks catch rates were dominated by the generalist tiger shark (Galeocerdo cuvier) and changed little, resulting in constant apex predator density despite heavy seagrass degradation. Abundances of most other consumers declined markedly as food and refuge resources vanished, with the exception of generalist loggerhead turtles. Several consumer groups significantly modified their habitat use patterns in response to the die‐off, but only bottlenose dolphins did so in a manner suggestive of a change in risk‐taking behavior. We show that ECEs can have strong indirect effects on megafauna populations and habitat use patterns in the marine environment, even when direct effects are minimal. Our results also show that indirect impacts are not uniform across taxa or trophic levels and suggest that generalist marine consumers are less susceptible to indirect effects of ECEs than specialists. Such non‐uniform changes in populations and habitat use patterns have implications for community dynamics, such as the relative strength of direct predation and predation risk. Attempts to predict ecological impacts of ECEs should recognize that direct and indirect effects often operate through different pathways and that taxa can be strongly impacted by one even if resilient to the other

    Why do models overestimate surface ozone in the Southeast United States

    Get PDF
    Ozone pollution in the Southeast US involves complex chemistry driven by emissions of anthropogenic nitrogen oxide radicals (NOx  ≡  NO + NO2) and biogenic isoprene. Model estimates of surface ozone concentrations tend to be biased high in the region and this is of concern for designing effective emission control strategies to meet air quality standards. We use detailed chemical observations from the SEAC4RS aircraft campaign in August and September 2013, interpreted with the GEOS-Chem chemical transport model at 0.25°  ×  0.3125° horizontal resolution, to better understand the factors controlling surface ozone in the Southeast US. We find that the National Emission Inventory (NEI) for NOx from the US Environmental Protection Agency (EPA) is too high. This finding is based on SEAC4RS observations of NOx and its oxidation products, surface network observations of nitrate wet deposition fluxes, and OMI satellite observations of tropospheric NO2 columns. Our results indicate that NEI NOx emissions from mobile and industrial sources must be reduced by 30–60 %, dependent on the assumption of the contribution by soil NOx emissions. Upper-tropospheric NO2 from lightning makes a large contribution to satellite observations of tropospheric NO2 that must be accounted for when using these data to estimate surface NOx emissions. We find that only half of isoprene oxidation proceeds by the high-NOx pathway to produce ozone; this fraction is only moderately sensitive to changes in NOx emissions because isoprene and NOx emissions are spatially segregated. GEOS-Chem with reduced NOx emissions provides an unbiased simulation of ozone observations from the aircraft and reproduces the observed ozone production efficiency in the boundary layer as derived from a regression of ozone and NOx oxidation products. However, the model is still biased high by 6 ± 14 ppb relative to observed surface ozone in the Southeast US. Ozonesondes launched during midday hours show a 7 ppb ozone decrease from 1.5 km to the surface that GEOS-Chem does not capture. This bias may reflect a combination of excessive vertical mixing and net ozone production in the model boundary layer

    Book Review of Serendipity: An Ecologist’s Quest to Understand Nature

    Get PDF
    A common thought among graduate students is: “how do established scientists get where they are today?” In Serendipity: An Ecologist’s Quest to Understand Nature, James Estes offers a personal reflection on research experiences spanning his 50-year career, beginning as a Ph.D. student in 1970 and concluding with recognition as a member of the National Academy of Sciences in 2014. Estes chronologically outlines the foundational trophic cascade ecology research that he and colleagues conducted in the Aleutian Islands, examining key relationships among kelp forests, sea otters, sea urchins, and killer whales through anecdotal stories of achievement and challenge. Estes’ 3 main goals in writing this book are to: (1) recount what he had learned from 50 years of research; (2) provide a larger story of how predators and prey interact with one another; and (3) explain how science “really happens.

    An ammonia spectral map of the L1495-B218 filaments in the Taurus molecular cloud. I. Physical properties of filaments and dense cores

    Get PDF
    We present deep NH3 observations of the L1495-B218 filaments in the Taurus molecular cloud covering over a 3° angular range using the K-band focal plane array on the 100 m Green Bank Telescope. The L1495-B218 filaments form an interconnected, nearby, large complex extending over 8 pc. We observed NH3 (1, 1) and (2, 2) with a spectral resolution of 0.038 km s−1 and a spatial resolution of 31''. Most of the ammonia peaks coincide with intensity peaks in dust continuum maps at 350 and 500 μm. We deduced physical properties by fitting a model to the observed spectra. We find gas kinetic temperatures of 8–15 K, velocity dispersions of 0.05–0.25 km s−1, and NH3 column densities of 5 × 1012 to 1 × 1014 cm−2. The CSAR algorithm, which is a hybrid of seeded-watershed and binary dendrogram algorithms, identifies a total of 55 NH3 structures, including 39 leaves and 16 branches. The masses of the NH3 sources range from 0.05 to 9.5 M{{M}_{\odot }}. The masses of NH3 leaves are mostly smaller than their corresponding virial mass estimated from their internal and gravitational energies, which suggests that these leaves are gravitationally unbound structures. Nine out of 39 NH3 leaves are gravitationally bound, and seven out of nine gravitationally bound NH3 leaves are associated with star formation. We also found that 12 out of 30 gravitationally unbound leaves are pressure confined. Our data suggest that a dense core may form as a pressure-confined structure, evolve to a gravitationally bound core, and undergo collapse to form a protostar

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    Statistical practices of educational researchers: An analysis of their ANOVA, MANOVA, and ANCOVA analyses

    Get PDF
    Articles published in several prominent educational journals were examined to investigate the use of data-analysis tools by researchers in four research paradigms: between-subjects univariate designs, between-subjects multivariate designs, repeated measures designs, and covariance designs. In addition to examining specific details pertaining to the research design (e.g., sample size, group size equality/inequality) and methods employed for data analysis, we also catalogued whether: (a) validity assumptions were examined, (b) effect size indices were reported, (c) sample sizes were selected based on power considerations, and (d) appropriate textbooks and/or articles were cited to communicate the nature of the analyses that were performed. Our analyses imply that researchers rarely verify that validity assumptions are satisfied and accordingly typically use analyses that are nonrobust to assumption violations. In addition, researchers rarely report effect size statistics, nor do they routinely perform power analyses to determine sample size requirements. We offer many recommendations to rectify these shortcomings.Social Sciences and Humanities Research Counci
    corecore