1,249 research outputs found

    Minneapolis New Careers Program: A Follow-up Study.

    Get PDF
    Office of Career Development

    Timing behavior of the Magnetically Active Rotation-Powered Pulsar in the Supernova Remnant Kestevan 75

    Full text link
    We report a large spin-up glitch in PSR J1846-0258 which coincided with the onset of magnetar-like behavior on 2006 May 31. We show that the pulsar experienced an unusually large glitch recovery, with a recovery fraction of Q=8.7+/- 2.5, resulting in a net decrease of the pulse frequency. Such a glitch recovery has never before been observed in a rotation-powered pulsar, however, similar but smaller glitch over-recovery has been recently reported in the magnetar AXP 4U~0142+61 and may have occurred in the SGR 1900+14. We also report a large increase in the timing noise of the source. We discuss the implications of the unusual timing behavior in PSR J1846-0258 on its status as the first identified magnetically active rotation-powered pulsar.Comment: 14 pages, 5 figures, Accepted for publication in the Astrophysical Journal. Incorporates changes from an anonymous referee; additional analysis and discussion include

    Well-managed grazing systems: A forgotten hero of conservation

    Get PDF
    Ecologically sound grazing management is an underused and underappreciated conservation tool in the eastern United States. We contend that significant policy and educational barriers stand in the way of expanding the use of this conservation tool. Well-managed pasture systems combine vigorous perennial vegetation cover, reduced pesticide and fertilizer inputs, and lower costs of production using ecological approaches to generate ecosystem services for society, as well as economic sustainability for the producer. The majority of currently available conservation policy tools were designed to address either rangeland grazing situations in the western United States or conservation cropping in the eastern United States. To promote well-managed pastures in the eastern United States, resource managers and government agencies struggle to adapt programs that are really designed for annual row crop systems. Additional educational and technical assistance resources are needed for promoting well-managed pasture-based farming in the region. This paper summarizes the potential of well-managed pasture systems to provide ecosystem services, provides thoughts for discussion on the barriers to adoption of such systems in the eastern United States, and offers some solutions to move such systems forward through policy and educational efforts. These ideas were first presented at a symposium as part of the 2011 Annual Conference of the Soil and Water Conservation Society in Washington, DC

    Heritability of working memory brain activation

    Get PDF
    Although key to understanding individual variation in task-related brain activation, the genetic contribution to these individual differences remains largely unknown. Here we report voxel-by-voxel genetic model fitting in a large sample of 319 healthy, young adult, human identical and fraternal twins (mean ± SD age, 23.6 ± 1.8 years) who performed an n-back working memory task during functional magnetic resonance imaging (fMRI) at a high magnetic field (4 tesla). Patterns of task-related brain response (BOLD signal difference of 2-back minus 0-back) were significantly heritable, with the highest estimates (40–65%) in the inferior, middle, and superior frontal gyri, left supplementary motor area, precentral and postcentral gyri, middle cingulate cortex, superior medial gyrus, angular gyrus, superior parietal lobule, including precuneus, and superior occipital gyri. Furthermore, high test-retest reliability for a subsample of 40 twins indicates that nongenetic variance in the fMRI brain response is largely due to unique environmental influences rather than measurement error. Individual variations in activation of the working memory network are therefore significantly influenced by genetic factors. By establishing the heritability of cognitive brain function in a large sample that affords good statistical power, and using voxel-by-voxel analyses, this study provides the necessary evidence for task-related brain activation to be considered as an endophenotype for psychiatric or neurological disorders, and represents a substantial new contribution to the field of neuroimaging genetics. These genetic brain maps should facilitate discovery of gene variants influencing cognitive brain function through genome-wide association studies, potentially opening up new avenues in the treatment of brain disorders

    A Causal Role of the Right Superior Temporal Sulcus in Emotion Recognition From Biological Motion

    Get PDF
    Understanding the emotions of others through nonverbal cues is critical for successful social interactions. The right posterior superior temporal sulcus (pSTS) is one brain region thought to be key in the recognition of the mental states of others based on body language and facial expression. In the present study, we temporarily disrupted functional activity of the right pSTS by using continuous, theta-burst transcranial magnetic stimulation (cTBS) to test the hypothesis that the right pSTS plays a causal role in emotion recognition from body movements. Participants (N = 23) received cTBS to the right pSTS, which was individually localized using fMRI, and a vertex control site. Before and after cTBS, we tested participants’ ability to identify emotions from point-light displays (PLDs) of biological motion stimuli and a nonbiological global motion identification task. Results revealed that accurate identification of emotional states from biological motion was reduced following cTBS to the right pSTS, but accuracy was not impaired following vertex stimulation. Accuracy on the global motion task was unaffected by cTBS to either site. These results support the causal role of the right pSTS in decoding information about others’ emotional state from their body movements and gestures

    Retnla (Relmα/Fizz1) Suppresses Helminth-Induced Th2-Type Immunity

    Get PDF
    Retnla (Resistin-like molecule alpha/FIZZ1) is induced during Th2 cytokine immune responses. However, the role of Retnla in Th2-type immunity is unknown. Here, using Retnla−/− mice and three distinct helminth models, we show that Retnla functions as a negative regulator of Th2 responses. Pulmonary granuloma formation induced by the eggs of the helminth parasite Schistosoma mansoni is dependent on IL-4 and IL-13 and associated with marked increases in Retnla expression. We found that both primary and secondary pulmonary granuloma formation were exacerbated in the absence of Retlna. The number of granuloma-associated eosinophils and serum IgE titers were also enhanced. Moreover, when chronically infected with S. mansoni cercariae, Retnla−/− mice displayed significant increases in granulomatous inflammation in the liver and the development of fibrosis and progression to hepatosplenic disease was markedly augmented. Finally, Retnla−/− mice infected with the gastrointestinal (GI) parasite Nippostrongylus brasiliensis had intensified lung pathology to migrating larvae, reduced fecundity, and accelerated expulsion of adult worms from the intestine, suggesting Th2 immunity was enhanced. When their immune responses were compared, helminth infected Retnla−/− mice developed stronger Th2 responses, which could be reversed by exogenous rRelmα treatment. Studies with several cytokine knockout mice showed that expression of Retnla was dependent on IL-4 and IL-13 and inhibited by IFN-γ, while tissue localization and cell isolation experiments indicated that eosinophils and epithelial cells were the primary producers of Retnla in the liver and lung, respectively. Thus, the Th2-inducible gene Retnla suppresses resistance to GI nematode infection, pulmonary granulomatous inflammation, and fibrosis by negatively regulating Th2-dependent responses

    Modeling of the hemodynamic responses in block design fMRI studies

    Get PDF
    The hemodynarnic response function (HRF) describes the local response of brain vasculature to functional activation. Accurate HRF modeling enables the investigation of cerebral blood flow regulation and improves our ability to interpret fMRI results. Block designs have been used extensively as fMRI paradigms because detection power is maximized; however, block designs are not optimal for HRF parameter estimation. Here we assessed the utility of block design fMRI data for HRF modeling. The trueness (relative deviation), precision (relative uncertainty), and identifiability (goodness-of-fit) of different HRF models were examined and test-retest reproducibility of HRF parameter estimates was assessed using computer simulations and fMRI data from 82 healthy young adult twins acquired on two occasions 3 to 4 months apart. The effects of systematically varying attributes of the block design paradigm were also examined. In our comparison of five HRF models, the model comprising the sum of two gamma functions with six free parameters had greatest parameter accuracy and identifiability. Hemodynamic response function height and time to peak were highly reproducible between studies and width was moderately reproducible but the reproducibility of onset time was low. This study established the feasibility and test-retest reliability of estimating HRF parameters using data from block design fMRI studies

    CATALISE: a multinational and multidisciplinary Delphi consensus study 2 of problems with language development. Phase 2. Terminology

    Get PDF
    Abstract 15 Background: Lack of agreement about criteria and terminology for children's language 16 problems affects access to services as well as hindering research and practice. We report the 17 second phase of a study using an online Delphi method to address these issues

    A reference relative time-scale as an alternative to chronological age for cohorts with long follow-up

    Get PDF
    Background: Epidemiologists have debated the appropriate time-scale for cohort survival studies; chronological age or time-on-study being two such time-scales. Importantly, assessment of risk factors may depend on the choice of time-scale. Recently, chronological or attained age has gained support but a case can be made for a ‘reference relative time-scale’ as an alternative which circumvents difficulties that arise with this and other scales. The reference relative time of an individual participant is the integral of a reference population hazard function between time of entry and time of exit of the individual. The objective here is to describe the reference relative time-scale, illustrate its use, make comparison with attained age by simulation and explain its relationship to modern and traditional epidemiologic methods. Results: A comparison was made between two models; a stratified Cox model with age as the time-scale versus an un-stratified Cox model using the reference relative time-scale. The illustrative comparison used a UK cohort of cotton workers, with differing ages at entry to the study, with accrual over a time period and with long follow-up. Additionally, exponential and Weibull models were fitted since the reference relative time-scale analysis need not be restricted to the Cox model. A simulation study showed that analysis using the reference relative time-scale and analysis using chronological age had very similar power to detect a significant risk factor and both were equally unbiased. Further, the analysis using the reference relative time-scale supported fully-parametric survival modelling and allowed percentile predictions and mortality curves to be constructed. Conclusions: The reference relative time-scale was a viable alternative to chronological age, led to simplification of the modelling process and possessed the defined features of a good time-scale as defined in reliability theory. The reference relative time-scale has several interpretations and provides a unifying concept that links contemporary approaches in survival and reliability analysis to the traditional epidemiologic methods of Poisson regression and standardised mortality ratios. The community of practitioners has not previously made this connection

    X-ray and Radio Timing of the Pulsar in 3C 58

    Full text link
    We present timing data spanning 6.4 yr for the young and energetic PSR J0205+6449, in the supernova remnant 3C 58. Data were obtained with the Rossi X-ray Timing Explorer, the Jodrell Bank Observatory and the Green Bank Telescope. We present phase-coherent timing analyses showing timing noise and two spin-up glitches with fractional frequency increases of ~3.4E-7 near MJD 52555, and ~3.8E-6 between MJDs 52777 and 53062. These glitches are unusually large if the pulsar was created in the historical supernova in 1181 as has been suggested. For the X-ray timing we developed a new unbinned maximum-likelihood method for determining pulse arrival times which performs significantly better than the traditional binned techniques. In addition, we present an X-ray pulse profile analysis of four years of RXTE data showing that the pulsar is detected up to ~40 keV. We also present the first measurement of the phase offset between the radio and X-ray pulse for this source, showing that the radio pulse leads the X-ray pulse by phi=0.10+/-0.01 in phase. We compile all known measurements of the phase offsets between radio and X-ray and radio and gamma-ray pulses for X-ray and gamma-ray pulsars. We show that there is no relationship between pulse period and phase offset, supported by our measurement of the phase offset for PSR J0205+6449.Comment: 19 pages, 12 figures. Published in the Astrophysical Journal. Includes additional data analysis and two new figure
    • …
    corecore