156 research outputs found

    Excursion to Stamford, Collyweston, and Ketton

    Get PDF
    n/

    Parametric resonance for vibration energy harvesting with design techniques to passively reduce the initiation threshold amplitude

    Get PDF
    A vibration energy harvester designed to access parametric resonance can potentially outperform the conventional direct resonant approach in terms of power output achievable given the same drive acceleration. Although linear damping does not limit the resonant growth of parametric resonance, a damping dependent initiation threshold amplitude exists and limits its onset. Design approaches have been explored in this paper to passively overcome this limitation in order to practically realize and exploit the potential advantages. Two distinct design routes have been explored, namely an intrinsically lower threshold through a pendulum-lever configuration and amplification of base excitation fed into the parametric resonator through a cantilever-initial-spring configuration. Experimental results of the parametric resonant harvesters with these additional enabling designs demonstrated an initiation threshold up to an order of magnitude lower than otherwise, while attaining a much higher power peak than direct resonance

    Synthesis, photophysics and molecular structures of luminescent 2,5-bis(phenylethynyl)thiophenes (BPETs)

    No full text
    International audienceThe Sonogashira cross-coupling of two equivalents of para-substituted ethynylbenzenes with 2,5-diiodothiophene provides a simple synthetic route for the preparation of 2,5-bis(para-R-phenylethynyl)thiophenes (R = H, Me, OMe, CF3, NMe2, NO2, CN and CO2Me) (1a-h). Likewise, 2,5-bis(pentafluorophenylethynyl)thiophene (2) was prepared by the coupling of 2,5-diiodothiophene with pentafluorophenylacetylene. All compounds were characterised by NMR, IR, Raman and mass spectroscopy, elemental analysis, and their absorption and emission spectra, quantum yields and lifetimes were also measured. The spectroscopic studies of 1a-h and 2 show that both electron donating and electron withdrawing para-subsituents on the phenyl rings shift the absorption and emission maxima to lower energies, but that acceptors are more efficient in this regard. The short singlet lifetimes and modest fluorescence quantum yields (ca. 0.2-0.3) observed are characteristic of rapid intersystem crossing. The single-crystal structures of 2,5-bis(phenylethynyl)thiophene, 2,5-bis(para-carbomethoxyphenylethynyl)thiophene, 2,5-bis(para-methylphenylethynyl)thiophene and 2,5-bis(pentafluorophenylethynyl)thiophene were determined by X-ray diffraction at 120 K. DFT calculations show that the all-planar form of the compounds is the lowest in energy, although rotation of the phenyl groups about the C[triple bond, length as m-dash]C bond is facile and TD-DFT calculations suggest that, similar to 1,4-bis(phenylethynyl)benzene analogues, the absorption spectra in solution arise from a variety of rotational conformations. Frequency calculations confirm the assignments of the compounds' IR and Raman spectra

    The Genomics of Disulfide Bonding and Protein Stabilization in Thermophiles

    Get PDF
    Thermophilic organisms flourish in varied high-temperature environmental niches that are deadly to other organisms. Recently, genomic evidence has implicated a critical role for disulfide bonds in the structural stabilization of intracellular proteins from certain of these organisms, contrary to the conventional view that structural disulfide bonds are exclusively extracellular. Here both computational and structural data are presented to explore the occurrence of disulfide bonds as a protein-stabilization method across many thermophilic prokaryotes. Based on computational studies, disulfide-bond richness is found to be widespread, with thermophiles containing the highest levels. Interestingly, only a distinct subset of thermophiles exhibit this property. A computational search for proteins matching this target phylogenetic profile singles out a specific protein, known as protein disulfide oxidoreductase, as a potential key player in thermophilic intracellular disulfide-bond formation. Finally, biochemical support in the form of a new crystal structure of a thermophilic protein with three disulfide bonds is presented together with a survey of known structures from the literature. Together, the results provide insight into biochemical specialization and the diversity of methods employed by organisms to stabilize their proteins in exotic environments. The findings also motivate continued efforts to sequence genomes from divergent organisms

    Centile charts for birthweight for gestational age for Scottish singleton births

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Centile charts of birthweight for gestational age are used to identify low birthweight babies. The charts currently used in Scotland are based on data from the 1970s and require updating given changes in birthweight and in the measurement of gestational age since then.</p> <p>Methods</p> <p>Routinely collected data of 100,133 singleton births occurring in Scotland from 1998ā€“2003 were used to construct new centile charts using the LMS method.</p> <p>Results</p> <p>Centile charts for birthweight for sex and parity groupings were constructed for singleton birth and compared to existing charts used in Scottish hospitals.</p> <p>Conclusion</p> <p>Mean birthweight has been shown to have increased over recent decades. The differences shown between the new and currently used centiles confirm the need for more up-to-date centiles for birthweight for gestational age.</p

    New Light Source (NLS) project: conceptual design report

    Get PDF

    Characterisation of a new family of carboxyl esterases with an OsmC domain

    Get PDF
    Proteins in the serine esterase family are widely distributed in bacterial phyla and display activity against a range of biologically produced and chemically synthesized esters. A serine esterase from the psychrophilic bacterium Pseudoalteromonas arctica with a C-terminal OsmC-like domain was recently characterized; here we report on the identification and characterization of further putative esterases with OsmC-like domains constituting a new esterase family that is found in a variety of bacterial species from different environmental niches. All of these proteins contained the Ser-Asp-His motif common to serine esterases and a highly conserved pentapeptide nucleophilic elbow motif. We produced these proteins heterologously in Escherichia coli and demonstrated their activity against a range of esterase substrates. Two of the esterases characterized have activity of over two orders of magnitude higher than other members of the family, and are active over a wide temperature range. We determined the crystal structure of the esterase domain of the protein from Rhodothermus marinus and show that it conforms to the classical Ī±/Ī² hydrolase fold with an extended ā€˜lidā€™ region, which occludes the active site of the protein in the crystal. The expansion of characterized members of the esterase family and demonstration of activity over a wide-range of temperatures could be of use in biotechnological applications such as the pharmaceutical, detergent, bioremediation and dairy industries

    The Tectonics of the Southern Midlands: A Criticism and a Contribution

    No full text
    • ā€¦
    corecore