35 research outputs found

    Graphene/Carbon Dot Hybrid Thin Films Prepared by a Modified Langmuir-Schaefer Method

    Get PDF
    The special electronic, optical, thermal, and mechanical properties of graphene resulting from its 2D nature, as well as the ease of functionalizing it through a simple acid treatment, make graphene an ideal building block for the development of new hybrid nanostructures with well-defined dimensions and behavior. Such hybrids have great potential as active materials in applications such as gas storage, gas/liquid separation, photocatalysis, bioimaging, optoelectronics, and nanosensing. In this study, luminescent carbon dots (C-dots) were sandwiched between oxidized graphene sheets to form novel hybrid multilayer films. Our thin-film preparation approach combines self-assembly with the Langmuir-Schaefer deposition and uses graphene oxide nanosheets as template for grafting C-dots in a bidimensional array. Repeating the cycle results in a facile and low-cost layer-by-layer procedure for the formation of highly ordered hybrid multilayers, which were characterized by photoluminescence, UV-visible, X-ray photoelectron, and Raman spectroscopies, as well as X-ray diffraction and atomic force microscopy.</p

    A diamino-functionalized silsesquioxane pillared graphene oxide for CO2 capture

    Get PDF
    In the race for viable solutions that could slow down carbon emissions and help in meeting the climate change targets a lot of effort is being made towards the development of suitable CO2 adsorbents with high surface area, tunable pore size and surface functionalities that could enhance selective adsorption. Here, we explored the use of silsesquioxane pillared graphene oxide for CO2 capture; we modified silsesquioxane loading and processing parameters in order to obtain pillared structures with nanopores of the tailored size and surface properties to maximize the CO2 sorption capacity. Powder X-ray diffraction, XPS and FTIR spectroscopies, thermal analysis (DTA/TGA), surface area measurements and CO2 adsorption measurements were employed to characterize the materials and evaluate their performance. Through this optimisation process, materials with good CO2 storage capacities of up to 1.7/1.5 mmol g(-1) at 273 K/298 K in atmospheric pressure, were achieved

    RNA delivery by extracellular vesicles in mammalian cells and its applications.

    Get PDF
    The term 'extracellular vesicles' refers to a heterogeneous population of vesicular bodies of cellular origin that derive either from the endosomal compartment (exosomes) or as a result of shedding from the plasma membrane (microvesicles, oncosomes and apoptotic bodies). Extracellular vesicles carry a variety of cargo, including RNAs, proteins, lipids and DNA, which can be taken up by other cells, both in the direct vicinity of the source cell and at distant sites in the body via biofluids, and elicit a variety of phenotypic responses. Owing to their unique biology and roles in cell-cell communication, extracellular vesicles have attracted strong interest, which is further enhanced by their potential clinical utility. Because extracellular vesicles derive their cargo from the contents of the cells that produce them, they are attractive sources of biomarkers for a variety of diseases. Furthermore, studies demonstrating phenotypic effects of specific extracellular vesicle-associated cargo on target cells have stoked interest in extracellular vesicles as therapeutic vehicles. There is particularly strong evidence that the RNA cargo of extracellular vesicles can alter recipient cell gene expression and function. During the past decade, extracellular vesicles and their RNA cargo have become better defined, but many aspects of extracellular vesicle biology remain to be elucidated. These include selective cargo loading resulting in substantial differences between the composition of extracellular vesicles and source cells; heterogeneity in extracellular vesicle size and composition; and undefined mechanisms for the uptake of extracellular vesicles into recipient cells and the fates of their cargo. Further progress in unravelling the basic mechanisms of extracellular vesicle biogenesis, transport, and cargo delivery and function is needed for successful clinical implementation. This Review focuses on the current state of knowledge pertaining to packaging, transport and function of RNAs in extracellular vesicles and outlines the progress made thus far towards their clinical applications

    Outbreaks of SARS-CoV-2 in naturally infected mink farms: Impact, transmission dynamics, genetic patterns, and environmental contamination

    No full text
    SARS-CoV-2 infection outbreaks in minks have serious implications associated with animal health and welfare, and public health. In two naturally infected mink farms (A and B) located in Greece, we investigated the outbreaks and assessed parameters associated with virus transmission, immunity, pathology, and environmental contamination. Symptoms ranged from anorexia and mild depression to respiratory signs of varying intensity. Although the farms were at different breeding stages, mortality was similarly high (8.4% and 10.0%). The viral strains belonged to lineages B.1.1.218 and B.1.1.305, possessing the mink-specific S-Y453F substitution. Lung histopathology identified necrosis of smooth muscle and connective tissue elements of vascular walls, and vasculitis as the main early key events of the acute SARS-CoV-2-induced broncho-interstitial pneumonia. Molecular investigation in two dead minks indicated a consistently higher (0.3–1.3 log10 RNA copies/g) viral load in organs of the male mink compared to the female. In farm A, the infected farmers were responsible for the significant initial infection of 229 out of 1,000 handled minks, suggesting a very efficient human-to-mink transmission. Subsequent infections across the sheds wherein animals were being housed occurred due to airborne transmission. Based on a R0 of 2.90 and a growth rate equal to 0.293, the generation time was estimated to be 3.6 days, indicative of the massive SARS-CoV-2 dispersal among minks. After the end of the outbreaks, a similar percentage of animals were immune in the two farms (93.0% and 93.3%), preventing further virus transmission whereas, viral RNA was detected in samples collected from shed surfaces and air. Consequently, strict biosecurity is imperative during the occurrence of clinical signs. Environmental viral load monitoring, in conjunction with NGS should be adopted in mink farm surveillance. The minimum proportion of minks that need to be immunized to avoid outbreaks in farms was calculated at 65.5%, which is important for future vaccination campaigns. Copyright: © 2021 Chaintoutis et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Establishing nationally representative central line-associated bloodstream infection surveillance data for paediatric patients in Greece

    No full text
    Background: Healthcare-associated infections (HCAIs) are associated with increased morbidity and mortality and with excess costs. Central line-associated bloodstream infections (CLABSIs) are the most common HCAIs in neonates and children. Aim: To establish national benchmark data for rates of CLABSI in neonatal and paediatric intensive care units (NICUs and PICUs) and paediatric oncology units (ONCs). Methods: Active surveillance for CLABSI was conducted from June 2016 to February 2017. A collaborative of 14 NICUs, four PICUs, and six ONCs participated in the programme. Surveillance definitions of central line (CL), central line utilization (CLU) ratio, CLABSI event, and CLABSI rate were based on the Centers for Disease Control and Prevention&apos;s 2014 National Healthcare Safety Network criteria. Medical records were assessed daily for calculating CL-days, patient-days, and susceptibility of isolated organisms. Findings: A total of 111 CLABSI episodes were recorded. The overall mean CLABSI rate was 4.41 infections per 1000 CL-days, and the CLU ratio was 0.31. CLABSI rates were 6.02 in NICUs, 6.09 in PICUs, and 2.78 per 1000 CL-days in ONCs. A total of 123 pathogens were isolated. The most common pathogens were Enterobacteriaceae (36%), followed by Gram-positive cocci (29%), non-fermenting Gram-negative bacteria (16%), and fungi (16%). Overall, 37% of Gram-negative pathogens were resistant to third-generation cephalosporins and 37% to carbapenems. Conclusion: Nationally representative CLABSI rates were determined for paediatric patients. These data could be used to benchmark and serve as baseline data for the design and evaluation of infection control and antimicrobial stewardship interventions. © 2018 The Healthcare Infection Societ

    Aging, Depot Origin, and Preadipocyte Gene Expression

    No full text
    Fat distribution changes with aging. Inherent changes in fat cell progenitors may contribute because fat cells turn over throughout life. To define mechanisms, gene expression was profiled in preadipocytes cultured from epididymal and perirenal depots of young and old rats. 8.4% of probe sets differed significantly between depots, particularly developmental genes. Only 0.02% differed with aging, despite using less stringent criteria than for comparing depots. Twenty-five genes selected based on fold change with aging were analyzed in preadipocytes from additional young, middle-aged, and old animals by polymerase chain reaction. Thirteen changed significantly with aging, 13 among depots, and 9 with both. Genes involved in inflammation, stress, and differentiation changed with aging, as occurs in fat tissue. Age-related changes were greater in perirenal than epididymal preadipocytes, consistent with larger declines in replication and adipogenesis in perirenal preadipocytes. Thus, age-related changes in preadipocyte gene expression differ among depots, potentially contributing to fat redistribution and dysfunction
    corecore