72 research outputs found

    Characterization and adsorption-based applications of nanoporous materials

    Get PDF
    The workshop program will focus on adsorption measurement techniques and methodologies for the assessment of adsorption properties and textural/structural characterization of novel nanoporous materials including zeolites, carbons, MOFs as well as materials consisting of hierarchically structured pore networks. A major point will be the correlation of textural properties, adsorption behavior, catalytic reaction pathways as well as transport properties with applications in gas and energy storage, separations and catalysis. Within this framework, the workshop will offer a platform for scientific discussions and for a knowledge transfer between various scientific areas where diffusion and transport properties of porous materials are of importance

    Adsorption hysteresis of nitrogen and argon in pore networks and characterization of novel microand mesoporous silicas

    Get PDF
    We report results of nitrogen and argon adsorption experiments performed at 77.4 and 87.3 K on novel micro/ mesoporous silica materials with morphologically different networks of mesopores embedded into microporous matrixes: SE3030 silica with wormlike cylindrical channels of mode diameter of ∼95 Å, KLE silica with cagelike spheroidal pores of ca. 140 Å, KLE/IL silica with spheroidal pores of ∼140 Å connected by cylindrical channels of ∼26 Å, and, also for a comparison, on Vycor glass with a disordered network of pores of mode diameter of ∼70 Å. We show that the type of hysteresis loop formed by adsorption/desorption isotherms is determined by different mechanisms of condensation and evaporation and depends upon the shape and size of pores. We demonstrate that adsorption experiments performed with different adsorptives allow for detecting and separating the effects of pore blocking/percolation and cavitation in the course of evaporation. The results confirm that cavitation-controlled evaporation occurs in ink-bottle pores with the neck size smaller than a certain critical value. In this case, the pressure of evaporation does not depend upon the neck size. In pores with larger necks, percolation-controlled evaporation occurs, as observed for nitrogen (at 77.4 K) and argon (at 87.3 K) on porous Vycor glass. We elaborate a novel hybrid nonlocal density functional theory (NLDFT) method for calculations of pore size distributions from adsorption isotherms in the entire range of micro-and mesopores. The NLDFT method, applied to the adsorption branch of the isotherm, takes into account the effect of delayed capillary condensation in pores of different geometries. The pore size data obtained by the NLDFT method for SE3030, KLE, and KLE/IL silicas agree with the data of SANS/SAXS techniques

    A Reference High-Pressure CO2 Adsorption Isotherm for Ammonium ZSM-5 Zeolite: Results of an Interlaboratory Study

    Get PDF
    © 2018, The Author(s). This paper reports the results of an international interlaboratory study led by the National Institute of Standards and Technology (NIST) on the measurement of high-pressure surface excess carbon dioxide adsorption isotherms on NIST Reference Material RM 8852 (ammonium ZSM-5 zeolite), at 293.15 K (20 °C) from 1 kPa up to 4.5 MPa. Eleven laboratories participated in this exercise and, for the first time, high-pressure adsorption reference data are reported using a reference material. An empirical reference equation nex=d(1+exp[(-ln(P)+a)/b])c, [nex-surface excess uptake (mmol/g), P-equilibrium pressure (MPa), a = −6.22, b = 1.97, c = 4.73, and d = 3.87] along with the 95% uncertainty interval (Uk = 2 = 0.075 mmol/g) were determined for the reference isotherm using a Bayesian, Markov Chain Monte Carlo method. Together, this zeolitic reference material and the associated adsorption data provide a means for laboratories to test and validate high-pressure adsorption equipment and measurements. Recommendations are provided for measuring reliable high-pressure adsorption isotherms using this material, including activation procedures, data processing methods to determine surface excess uptake, and the appropriate equation of state to be used

    The importance of inherent inorganics and the surface area of wood char for its gasification reactivity and catalytic activity towards toluene conversion

    Get PDF
    Gasification char is an effective catalyst for tar reforming because of the abundance of surface active sites, which are available for heterogeneous conversion of hydrocarbons and interactions with the reforming agents. This paper focuses on the importance of certain char properties for the gasification and catalytic reforming. Specifically, the gasification reactivity of spruce char is examined, along with its performance as a catalyst for toluene conversion. The material used for this work was produced via gasification of spruce wood chips in the pilot TwoStage Viking plant (Technical University of Denmark, Risø). To obtain a set of samples with varied surface area characteristics and inorganic content, three pre-treatments were applied to samples of this char: acid washing, steam activation, and high-temperature treatment. The gasification and catalytic experiments performed with the untreated and modified materials revealed that the reactivity of the char during gasification in CO2 depends mostly on the metal content in the sample, whereas the conversion of toluene was insensitive to the char inorganic content, but strongly correlated with the surface area available for heterogeneous reactions with toluene

    Progress in the Physisorption Characterization of Nanoporous Gas Storage Materials

    No full text
    Assessing the adsorption properties of nanoporous materials and determining their structural characterization is critical for progressing the use of such materials for many applications, including gas storage. Gas adsorption can be used for this characterization because it assesses a broad range of pore sizes, from micropore to mesopore. In the past 20 years, key developments have been achieved both in the knowledge of the adsorption and phase behavior of fluids in ordered nanoporous materials and in the creation and advancement of state-of-the-art approaches based on statistical mechanics, such as molecular simulation and density functional theory. Together with high-resolution experimental procedures for the adsorption of subcritical and supercritical fluids, this has led to significant advances in physical adsorption textural characterization. In this short, selective review paper, we discuss a few important and central features of the underlying adsorption mechanisms of fluids in a variety of nanoporous materials with well-defined pore structure. The significance of these features for advancing physical adsorption characterization and gas storage applications is also discussed. Keywords: Adsorption, Characterization, High-pressure adsorption, Nanoporous material

    Characterization and adsorption-based applications of nanoporous materials

    No full text
    The workshop program will focus on adsorption measurement techniques and methodologies for the assessment of adsorption properties and textural/structural characterization of novel nanoporous materials including zeolites, carbons, MOFs as well as materials consisting of hierarchically structured pore networks. A major point will be the correlation of textural properties, adsorption behavior, catalytic reaction pathways as well as transport properties with applications in gas and energy storage, separations and catalysis. Within this framework, the workshop will offer a platform for scientific discussions and for a knowledge transfer between various scientific areas where diffusion and transport properties of porous materials are of importance

    Characterization and adsorption-based applications of nanoporous materials

    Get PDF
    The workshop program will focus on adsorption measurement techniques and methodologies for the assessment of adsorption properties and textural/structural characterization of novel nanoporous materials including zeolites, carbons, MOFs as well as materials consisting of hierarchically structured pore networks. A major point will be the correlation of textural properties, adsorption behavior, catalytic reaction pathways as well as transport properties with applications in gas and energy storage, separations and catalysis. Within this framework, the workshop will offer a platform for scientific discussions and for a knowledge transfer between various scientific areas where diffusion and transport properties of porous materials are of importance
    • …
    corecore