7 research outputs found

    Effets d'irradiation et comportement des produits de fission dans la zircone et le spinelle

    No full text
    Certains oxydes sous forme cristalline, plus particulièrement la zircone (ZrO2) et le spinelle (MgAl2O4), sont des matrices potentielles pour la transmutation du plutonium et des actinides mineurs. Ce travail concerne l'étude des propriétés physico-chimiques de ces matrices, avec un accent particulier sur leur comportement vis-à-vis de l'irradiation et leur capacité à confiner les produits de fission. Les irradiations à basse énergie et l'incorporation d'analogues stables de produits de fission (Cs, J, Xe) dans des monocristaux de ZrO2 (phase cubique stabilisée avec Y2O3) et MgAl2O4 ont été réalisées avec l'implanteur d'ions du CSNSM-Orsay. Les irradiations à haute énergie ont été effectuées sur divers accélérateurs d'ions lourds (GANIL-Caen, ISL-Berlin, HIL-Varsovie). Les techniques de microanalyse nucléaire (RBS et canalisation) ont été mises en œuvre in situ sur l'accélérateur ARAMIS du CSNSM-Orsay pour caractériser le désordre créé par l'irradiation, et pour étudier le relâchement des produits de fission. Des expériences complémentaires de microscopie électronique à transmission ont été réalisées afin de déterminer la nature du désordre créé. Les résultats expérimentaux indiquent que l'irradiation de ZrO2 et MgAl2O4 avec des ions lourds de quelques centaines de keV ou de quelques centaines de MeV crée un désordre structural important dans les matrices cristallines. Le désordre total (amorphisation) n'est jamais atteint dans le cas de la zircone, contrairement au spinelle. Ces résultats montrent également l'influence déterminante de la concentration en produits de fission sur leur relâchement dans les deux matériaux étudiés, avec une forte augmentation du relâchement quand la concentration excède une valeur seuil, ou en présence de défauts produits par une irradiation avec des ions de gaz rares. Une exfoliation du spinelle implanté à forte concentration d'ions Cs est observée après traitement thermique à haute température.Crystalline oxides, such as zirconia (ZrO2) and spinel (MgAl2O4), are promising inert matrices for the transmutation of plutonium and minor actinides. This work deals with the study of the physico-chemical properties of these matrices, more specifically their behaviour under irradiation and their capacity to retain fission products. Irradiations at low energy and incorporation of stable analogs of fission products (Cs, I, Xe) into yttria-stabilized zirconia and magnesium-aluminate spinel single crystals were performed by using the ion implanter IRMA (CSNSM-Orsay). Irradiations at high energy were made on several heavy ion accelerators (GANIL-Caen, ISL-Berlin, HIL-Varsovie). The damage induced by irradiation and the release of fission products were monitored by in situ Rutherford Backscattering Spectrometry experiments. Transmission electron microscopy was also used in order to determine the nature of the damage induced by irradiation. The results show that irradiation of ZrO2 and MgAl2O4 with heavy ions (~ hundred keV and ~ hundred MeV) induces a huge structural damage in crystalline matrices. Total disorder (amorphisation) is however never reached in zirconia, contrary to what is observed in the case of spinel. The results also emphasise the essential role played by the concentration of implanted species on their retention capacity. A dramatic release of fission products was observed when the concentration exceeds a threshold of a few atomic percent. Irradiation of implanted samples with medium-energy noble-gas ions leads to an enhancement of the fission product release. The exfoliation of spinel crystals implanted at high concentration of Cs ions is observed after a therminal treatment at high temperature.ORSAY-PARIS 11-BU Sciences (914712101) / SudocSudocFranceF

    An invariant may drive the decision to encroach at unsignalized intersections

    Get PDF
    This paper introduces a novel approach to understanding when and where drivers make the Go / No Go decision (not) to turn left and encroach upon an approaching car that has the right-of-way in an unsignalized intersection. The source of data is approximately 2,400 hours of video recordings at two intersections near Göteborg, Sweden. Automated image processing software extracted the trajectories of the pairs of cars involved in more than 14,000 left turns across traffic at the first intersection and 2,400 at the second. We subdivided the data into four different left-turn scenarios - where the approaching car arrives from the opposite direction, from the lateral direction, from the intended direction (merging), and while making its own left turn. For each scenario, we found the distances between the turning car and the approaching car at the time when we can assume the decision (not) to turn is made and conducted logistic regressions to identify the distances associated with the 50/50 acceptance probabilities for the decision (not) to turn. We also calculated the resulting encroachment distances (‘trailing buffers’) for every decision to turn. We expected to find wide variability in these buffers. Instead, we observed separations that were virtually the same across scenarios at each intersection but differed across intersections. Tacit, intersection-dependent knowledge of this invariant may drive the decision of whether or not to turn and encroach. We discuss the implications this finding has for the design of in-vehicle active safety systems

    Design status of ASPIICS, an externally occulted coronagraph for PROBA-3

    Full text link
    The “sonic region” of the Sun corona remains extremely difficult to observe with spatial resolution and sensitivity sufficient to understand the fine scale phenomena that govern the quiescent solar corona, as well as phenomena that lead to coronal mass ejections (CMEs), which influence space weather. Improvement on this front requires eclipse-like conditions over long observation times. The space-borne coronagraphs flown so far provided a continuous coverage of the external parts of the corona but their over-occulting system did not permit to analyse the part of the white-light corona where the main coronal mass is concentrated. The proposed PROBA-3 Coronagraph System, also known as ASPIICS (Association of Spacecraft for Polarimetric and Imaging Investigation of the Corona of the Sun), with its novel design, will be the first space coronagraph to cover the range of radial distances between ~1.15 and 3 solar radii where the magnetic field plays a crucial role in the coronal dynamics, thus providing continuous observational conditions very close to those during a total solar eclipse. PROBA-3 is first a mission devoted to the in-orbit demonstration of precise formation flying techniques and technologies for future European missions, which will fly ASPIICS as primary payload. The instrument is distributed over two satellites flying in formation (approx. 150m apart) to form a giant coronagraph capable of producing a nearly perfect eclipse allowing observing the sun corona closer to the rim than ever before. The coronagraph instrument is developed by a large European consortium including about 20 partners from 7 countries under the auspices of the European Space Agency. This paper is reviewing the recent improvements and design updates of the ASPIICS instrument as it is stepping into the detailed design phase
    corecore