122 research outputs found

    Comparison of wall thickening and ejection fraction by cardiovascular magnetic resonance and echocardiography in acute myocardial infarction

    Get PDF
    <p>Abstract</p> <p>Objectives</p> <p>The purpose of this study was to compare cardiovascular magnetic resonance (CMR) and echocardiography (echo) in patients treated with primary percutaneous coronary intervention (PCI) for acute myocardial infarction (AMI) with emphasis on the analysis of left ventricular function and left ventricular wall motion characteristics.</p> <p>Methods</p> <p>We performed CMR and echo in 52 patients with first AMI shortly after primary angioplasty and four months thereafter. CMR included cine-MR and T1-weighted first-pass and late-gadolinium enhancement (LGE) sequences. Global ejection fraction (EF<sub>CMR</sub>, %) and regional left ventricular function (systolic wall thickening %, [SWT]) were determined from cine-MR images. In echo the global left ventricular function (EF<sub>echo</sub>, %) and regional wall motion abnormalities were determined. A segment in echo was scored as "infarcted" if it was visually > 50% hypokinetic.</p> <p>Results</p> <p>EF<sub>echo </sub>revealed a poor significant agreement with EF<sub>CMR </sub>at baseline (r: 0.326; p < 0.01) but higher correlation at follow-up (r: 0.479; p < 0.001). The number of infarcted segments in echocardiography correlated best with the number of segments which showed systolic wall thickening < 30% (r: 0.498; p < 0.001) at baseline and (r: 0.474; p < 0.001) at follow-up. Improvement of EF was detected in both CMR and echocardiography increasing from 44.2 ± 11.6% to 49.2 ± 11% (p < 0.001) by CMR and from 51.2 ± 8.1% to 54.5 ± 8.3% (p < 0.001) by echocardiography.</p> <p>Conclusion</p> <p>Wall motion and EF by CMR and echocardiography correlate poorly in the acute stage of myocardial infarction. Correlation improves after four months. Systolic wall thickening by CMR < 30% indicates an infarcted segment with influence on the left ventricular function.</p

    Single-Beat Noninvasive Imaging of Ventricular Endocardial and Epicardial Activation in Patients Undergoing CRT

    Get PDF
    BACKGROUND: Little is known about the effect of cardiac resynchronization therapy (CRT) on endo- and epicardial ventricular activation. Noninvasive imaging of cardiac electrophysiology (NICE) is a novel imaging tool for visualization of both epi- and endocardial ventricular electrical activation. METHODOLOGY/PRINCIPAL FINDINGS: NICE was performed in ten patients with congestive heart failure (CHF) undergoing CRT and in ten patients without structural heart disease (control group). NICE is a fusion of data from high-resolution ECG mapping with a model of the patient's individual cardiothoracic anatomy created from magnetic resonance imaging. Beat-to-beat endocardial and epicardial ventricular activation sequences were computed during native rhythm as well as during ventricular pacing using a bidomain theory-based heart model to solve the related inverse problem. During right ventricular (RV) pacing control patients showed a deterioration of the ventricular activation sequence similar to the intrinsic activation pattern of CHF patients. Left ventricular propagation velocities were significantly decreased in CHF patients as compared to the control group (1.6±0.4 versus 2.1±0.5 m/sec; p<0.05). CHF patients showed right-to-left septal activation with the latest activation epicardially in the lateral wall of the left ventricle. Biventricular pacing resulted in a resynchronization of the ventricular activation sequence and in a marked decrease of total LV activation duration as compared to intrinsic conduction and RV pacing (129±16 versus 157±28 and 173±25 ms; both p<0.05). CONCLUSIONS/SIGNIFICANCE: Endocardial and epicardial ventricular activation can be visualized noninvasively by NICE. Identification of individual ventricular activation properties may help identify responders to CRT and to further improve response to CRT by facilitating a patient-specific lead placement and device programming

    Immunomodulatory imide drugs inhibit human detrusor smooth muscle contraction and growth of human detrusor smooth muscle cells, and exhibit vaso-regulatory functions

    Get PDF
    Background: The immunomodulatory imide drugs (IMiDs) thalidomide, lenalidomide and pomalidomide may exhibit therapeutic efficacy in the prostate. In lower urinary tract symptoms (LUTS), voiding and storage disorders may arise from benign prostate hyperplasia, or overactive bladder. While current therapeutic options target smooth muscle contraction or cell proliferation, side effects are mostly cardiovascular. Therefore, we investigated effects of IMiDs on human detrusor and porcine artery smooth muscle contraction, and growthrelated functions in detrusor smooth muscle cells (HBdSMC). Methods: Cell viability was assessed by CCK8, and apoptosis and cell death by flow cytometry in cultured HBdSMC. Contractions of human detrusor tissues and porcine interlobar and coronary arteries were induced by contractile agonists, or electric field stimulation (EFS) in the presence or absence of an IMID using an organ bath. Proliferation was assessed by EdU assay and colony formation, cytoskeletal organization by phalloidin staining, Results: Depending on tissue type, IMiDs inhibited cholinergic contractions with varying degree, up to 50 %, while non-cholinergic contractions were inhibited up to 80 % and 60 % for U46619 and endothelin-1, respectively, and EFS-induced contractions up to 75 %. IMiDs reduced viable HBdSM cells in a time-dependent manner. Correspondingly, proliferation was reduced, without showing pro-apoptotic effects. In parallel, IMiDs induced cytoskeletal disorganization. Conclusions: IMiDs exhibit regulatory functions in various smooth muscle-rich tissues, and of cell proliferation in the lower urinary tract. This points to a novel drug class effect for IMiDs, in which the molecular mechanisms of action of IMiDs merit further consideration for the application in LUTS

    HDL-related biomarkers are robust predictors of survival in patients with chronic liver failure

    Get PDF
    Background & Aims: High-density lipoprotein cholesterol (HDL-C) levels are reduced in patients with chronic liver disease and inversely correlate with disease severity. During acute conditions such as sepsis, HDL-C levels decrease rapidly and HDL particles undergo profound changes in their composition and function. We aimed to determine whether indices of HDL quantity and quality associate with progression and survival in patients with advanced liver disease. Methods: HDL-related biomarkers were studied in 508 patients with compensated or decompensated cirrhosis (including acute-on-chronic liver failure [ACLF]) and 40 age- and gender-matched controls. Specifically, we studied levels of HDL-C, its subclasses HDL2-C and HDL3-C, and apolipoprotein A1 (apoA-I), as well as HDL cholesterol efflux capacity as a metric of HDL functionality. Results: Baseline levels of HDL-C and apoA-I were significantly lower in patients with stable cirrhosis compared to controls and were further decreased in patients with acute decompensation (AD) and ACLF. In stable cirrhosis (n = 228), both HDL-C and apoA-I predicted the development of liver-related complications independently of model for end-stage liver disease (MELD) score. In patients with AD, with or without ACLF (n = 280), both HDL-C and apoA-I were MELD-independent predictors of 90-day mortality. On ROC analysis, both HDL-C and apoA-I had high diagnostic accuracy for 90-day mortality in patients with AD (AUROCs of 0.79 and 0.80, respectively, similar to that of MELD 0.81). On Kaplan-Meier analysis, HDL-C <17 mg/dl and apoA-I <50 mg/dl indicated poor short-term survival. The prognostic accuracy of HDL-C was validated in a large external validation cohort of 985 patients with portal hypertension due to advanced chronic liver disease (AUROCs HDL-C: 0.81 vs. MELD: 0.77). Conclusion: HDL-related biomarkers are robust predictors of disease progression and survival in chronic liver failure

    Modern Interpretation of Giant Cell Tumor of Bone: Predominantly Osteoclastogenic Stromal Tumor

    Get PDF
    Owing to striking features of numerous multinucleated cells and bone destruction, giant cell tumor (GCT) of bone, often called as osteoclastoma, has drawn major attractions from orthopaedic surgeons, pathologists, and radiologists. The name GCT or osteoclastoma gives a false impression of a tumor comprising of proliferating osteoclasts or osteoclast precursors. The underlying mechanisms for excessive osteoclastogenesis are intriguing and GCT has served as an exciting disease model representing a paradigm of osteoclastogenesis for bone biologists. The modern interpretation of GCT is predominantly osteoclastogenic stromal cell tumors of mesenchymal origin. A diverse array of inflammatory cytokines and chemokines disrupts osteoblastic differentiation and promotes the formation of excessive multi-nucleated osteoclastic cells. Pro-osteoclastogenic cytokines such as receptor activator of nuclear factor kappa-B ligand (RANKL), interleukin (IL)-6, and tumor necrosis factor (TNF) as well as monocyte-recruiting chemokines such as stromal cell-derived factor-1 (SDF-1) and monocyte chemoattractant protein (MCP)-1 participate in unfavorable osteoclastogenesis and bone destruction. This model represents a self-sufficient osteoclastogenic paracrine loop in a localized area. Consistent with this paradigm, a recombinant RANK-Fc protein and bisphosphonates are currently being tried for GCT treatment in addition to surgical excision and conventional topical adjuvant therapies
    corecore