184 research outputs found

    Resistant Hypertension and Obstructive Sleep Apnea: The Sparring Partners

    Get PDF
    Enhanced target organ damage and cardiovascular morbidity represent common issues observed in both resistant hypertension and obstructive sleep apnea. Common pathophysiological features and risk factors justify their coexistence, especially in individuals with increased upper-body adiposity. Impaired sodium handling, sympathetic activation, accelerated arterial stiffening, and impaired cardiorenal hemodynamics contribute to drug-resistant hypertension development in obstructive sleep apnea. Effective CPAP therapy qualifies as an effective “add-on” to the underlying antihypertensive pharmacological therapy, and emerging evidence underlines the favorable effect of mineralocorticoid antagonists on both resistant hypertension and obstructive sleep apnea treatment

    The effect of mesenchymal stromal cell sheets on the inflammatory stage of flexor tendon healing

    Get PDF
    BACKGROUND: The clinical outcomes following intrasynovial flexor tendon repair are highly variable. Excessive inflammation is a principal factor underlying the formation of adhesions at the repair surface and affecting matrix regeneration at the repair center that limit tendon excursion and impair tendon healing. A previous in-vitro study revealed that adipose-derived mesenchymal stromal cells (ASCs) modulate tendon fibroblast response to macrophage-induced inflammation. The goal of the current study was therefore to explore the effectiveness of autologous ASCs on the inflammatory stage of intrasynovial tendon healing in vivo using a clinically relevant animal model. METHODS: Zone II flexor tendon transections and suture repairs were performed in a canine model. Autologous ASC sheets were delivered to the surface of repaired tendons. Seven days after repair, the effects of ASCs on tendon healing, with a focus on the inflammatory response, were evaluated using gene expression assays, immunostaining, and histological assessments. RESULTS: ASCs delivered via the cell sheet infiltrated the host tendon, including the repair surface and the space between the tendon ends, as viewed histologically by tracking GFP-expressing ASCs. Gene expression results demonstrated that ASCs promoted a regenerative/anti-inflammatory M2 macrophage phenotype and regulated tendon matrix remodeling. Specifically, there were significant increases in M2-stimulator (IL-4), marker (CD163 and MRC1), and effector (VEGF) gene expression in ASC-sheet treated tendons compared with nontreated tendons. When examining changes in extracellular matrix expression, tendon injury caused a significant increase in scar-associated COL3A1 expression and reductions in COL2A1 and ACAN expression. The ASC treatment effectively counteracted these changes, returning the expression levels of these genes closer to normal. Immunostaining further confirmed that ASC treatment increased CD163(+) M2 cells in the repaired tendons and suppressed cell apoptosis at the repair site. CONCLUSIONS: This study provides a novel approach for delivering ASCs with outcomes indicating potential for substantial modulation of the inflammatory environment and enhancement of tendon healing after flexor tendon repair

    The “Elpis” Registry on Percutaneous Coronary Interventions: A Three-Year Experience

    Get PDF
    The advent of percutaneous coronary intervention (PCI) transformed the treatment of obstructive coronary artery disease (CAD) by creating a less invasive revascularization option to coronary-artery bypass grafting (CABG).1 Although, randomized controlled clinical trials (RCTs) are the gold standard in medical research, there is not always the possibility to conduct properly designed RCTs. The gap between evidence from RCTs and clinical practice can be filled by epidemiological studies and properly designed registries.2 The results of the Hellenic Heart Registry on Percutaneous Coronary Interventions (HHR-PCI), a national registry of patients with stable angina or acute coronary syndromes who underwent PCI, were only recently published.3 The purpose of the current study is to report the experience of a newly formed Catheterization laboratory at a tertiary hospital of Athens and to compare its findings to those reported by the HHR-PCI... (excerpt

    Advances in the healing of flexor tendon injuries

    Full text link
    The intrasynovial flexor tendons of the hand are critical for normal hand function. Injury to these tendons can result in absent finger flexion, and a subsequent loss of overall hand function. The surgical techniques used to repair these tendons have improved in the past few decades, as have the postoperative rehabilitation protocols. In spite of these advances, intrasynovial flexor tendon repairs continue to be plagued by postoperative scar formation, which limits tendon gliding and prevents a full functional recovery. This paper describes the current challenges of flexor tendon repair, and evaluates the most recent advances and strategies for achieving an excellent functional outcome.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/106844/1/wrr12161.pd

    Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.

    Get PDF
    The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition

    Artificial intelligence for classification of temporal lobe epilepsy with ROI-level MRI data: A worldwide ENIGMA-Epilepsy study

    Get PDF
    Artificial intelligence has recently gained popularity across different medical fields to aid in the detection of diseases based on pathology samples or medical imaging findings. Brain magnetic resonance imaging (MRI) is a key assessment tool for patients with temporal lobe epilepsy (TLE). The role of machine learning and artificial intelligence to increase detection of brain abnormalities in TLE remains inconclusive. We used support vector machine (SV) and deep learning (DL) models based on region of interest (ROI-based) structural (n = 336) and diffusion (n = 863) brain MRI data from patients with TLE with (“lesional”) and without (“non-lesional”) radiographic features suggestive of underlying hippocampal sclerosis from the multinational (multi-center) ENIGMA-Epilepsy consortium. Our data showed that models to identify TLE performed better or similar (68–75%) compared to models to lateralize the side of TLE (56–73%, except structural-based) based on diffusion data with the opposite pattern seen for structural data (67–75% to diagnose vs. 83% to lateralize). In other aspects, structural and diffusion-based models showed similar classification accuracies. Our classification models for patients with hippocampal sclerosis were more accurate (68–76%) than models that stratified non-lesional patients (53–62%). Overall, SV and DL models performed similarly with several instances in which SV mildly outperformed DL. We discuss the relative performance of these models with ROI-level data and the implications for future applications of machine learning and artificial intelligence in epilepsy care

    A Novel Ecdysone Receptor Mediates Steroid-Regulated Developmental Events during the Mid-Third Instar of Drosophila

    Get PDF
    The larval salivary gland of Drosophila melanogaster synthesizes and secretes glue glycoproteins that cement developing animals to a solid surface during metamorphosis. The steroid hormone 20-hydroxyecdysone (20E) is an essential signaling molecule that modulates most of the physiological functions of the larval gland. At the end of larval development, it is known that 20E—signaling through a nuclear receptor heterodimer consisting of EcR and USP—induces the early and late puffing cascade of the polytene chromosomes and causes the exocytosis of stored glue granules into the lumen of the gland. It has also been reported that an earlier pulse of hormone induces the temporally and spatially specific transcriptional activation of the glue genes; however, the receptor responsible for triggering this response has not been characterized. Here we show that the coordinated expression of the glue genes midway through the third instar is mediated by 20E acting to induce genes of the Broad Complex (BRC) through a receptor that is not an EcR/USP heterodimer. This result is novel because it demonstrates for the first time that at least some 20E-mediated, mid-larval, developmental responses are controlled by an uncharacterized receptor that does not contain an RXR-like component

    The ENIGMA-Epilepsy working group: Mapping disease from large data sets

    Get PDF
    Epilepsy is a common and serious neurological disorder, with many different constituent conditions characterized by their electro clinical, imaging, and genetic features. MRI has been fundamental in advancing our understanding of brain processes in the epilepsies. Smaller‐scale studies have identified many interesting imaging phenomena, with implications both for understanding pathophysiology and improving clinical care. Through the infrastructure and concepts now well‐established by the ENIGMA Consortium, ENIGMA‐Epilepsy was established to strengthen epilepsy neuroscience by greatly increasing sample sizes, leveraging ideas and methods established in other ENIGMA projects, and generating a body of collaborating scientists and clinicians to drive forward robust research. Here we review published, current, and future projects, that include structural MRI, diffusion tensor imaging (DTI), and resting state functional MRI (rsfMRI), and that employ advanced methods including structural covariance, and event‐based modeling analysis. We explore age of onset‐ and duration‐related features, as well as phenomena‐specific work focusing on particular epilepsy syndromes or phenotypes, multimodal analyses focused on understanding the biology of disease progression, and deep learning approaches. We encourage groups who may be interested in participating to make contact to further grow and develop ENIGMA‐Epilepsy

    Event-based modelling in temporal lobe epilepsy demonstrates progressive atrophy from cross-sectional data

    Get PDF
    OBJECTIVE: Recent work has shown that people with common epilepsies have characteristic patterns of cortical thinning, and that these changes may be progressive over time. Leveraging a large multi-centre cross-sectional cohort, we investigated whether regional morphometric changes occur in a sequential manner, and whether these changes in people with mesial temporal lobe epilepsy and hippocampal sclerosis (MTLE-HS) correlate with clinical features. METHODS: We extracted regional measures of cortical thickness, surface area and subcortical brain volumes from T1-weighted (T1W) MRI scans collected by the ENIGMA-Epilepsy consortium, comprising 804 people with MTLE-HS and 1,625 healthy controls from 25 centres. Features with a moderate case-control effect size (Cohen's d≄0.5) were used to train an Event-Based Model (EBM), which estimates a sequence of disease-specific biomarker changes from cross-sectional data and assigns a biomarker-based fine-grained disease stage to individual patients. We tested for associations between EBM disease stage and duration of epilepsy, age of onset and anti-seizure medicine (ASM) resistance. RESULTS: In MTLE-HS, decrease in ipsilateral hippocampal volume along with increased asymmetry in hippocampal volume was followed by reduced thickness in neocortical regions, reduction in ipsilateral thalamus volume and, finally, increase in ipsilateral lateral ventricle volume. EBM stage was correlated to duration of illness (Spearman's ρ=0.293, p=7.03x10-16 ), age of onset (ρ=-0.18, p=9.82x10-7 ) and ASM resistance (AUC=0.59, p=0.043, Mann-Whitney U test). However, associations were driven by cases assigned to EBM stage zero, which represents MTLE-HS with mild or non-detectable abnormality on T1W MRI. SIGNIFICANCE: From cross-sectional MRI, we reconstructed a disease progression model that highlights a sequence of MRI changes that aligns with previous longitudinal studies. This model could be used to stage MTLE-HS subjects in other cohorts and help establish connections between imaging-based progression staging and clinical features
    • 

    corecore