44 research outputs found

    Diagnosing a distributed hydrologic model for two high-elevation forested catchments based on detailed stand- and basin-scale data

    Get PDF
    This study evaluates the performance and internal structure of the distributed hydrology soil vegetation model (DHSVM) using 1998-2001 data collected at Upper Penticton Creek, British Columbia, Canada. It is shown that clear-cut snowmelt rates calculated using data-derived snow albedo curves are in agreement with observed lysimeter outflow. Measurements in a forest stand with 50% air crown closure suggest that the fraction of shortwave radiation transmitted through the canopy is 0.18-0.28 while the hemispherical canopy view factor controlling longwave radiation fluxes to the forest snowpack is estimated at 0.81 ± 0.07. DHSVM overestimates shortwave transmittance (0.50) and underestimates the view factor (0.50). An alternative forest radiation balance is formulated that is consistent with the measurements. This new formulation improves model efficiency in simulating streamflow from 0.84 to 0.91 due to greater early season melt that results from the enhanced importance of longwave radiation below the canopy. The model captures differences in canopy rainfall interception between small and large storms, tree transpiration measured over a 6-day summer period, and differences in soil moisture between a dry and a wet summer. While the model was calibrated to 1999 snow water equivalent (SWE) and hydrograph data for the untreated control basin, it successfully simulates forest and clear-cut SWE and streamflow for the 3 other years and 4 years of preharvesting and postharvesting streamflow for the second basin. Comparison of model states with the large array of observations suggests that the modified model provides a reliable tool for assessing forest management impacts in the region.Mark Thyer, Jos Beckers, Dave Spittlehouse, Younes Alila, and Rita Winkle

    Positional Cloning of Zinc Finger Domain Transcription Factor Zfp69, a Candidate Gene for Obesity-Associated Diabetes Contributed by Mouse Locus Nidd/SJL

    Get PDF
    Polygenic type 2 diabetes in mouse models is associated with obesity and results from a combination of adipogenic and diabetogenic alleles. Here we report the identification of a candidate gene for the diabetogenic effect of a QTL (Nidd/SJL, Nidd1) contributed by the SJL, NON, and NZB strains in outcross populations with New Zealand Obese (NZO) mice. A critical interval of distal chromosome 4 (2.1 Mbp) conferring the diabetic phenotype was identified by interval-specific congenic introgression of SJL into diabetes-resistant C57BL/6J, and subsequent reporter cross with NZO. Analysis of the 10 genes in the critical interval by sequencing, qRT–PCR, and RACE–PCR revealed a striking allelic variance of Zfp69 encoding zinc finger domain transcription factor 69. In NZO and C57BL/6J, a retrotransposon (IAPLTR1a) in intron 3 disrupted the gene by formation of a truncated mRNA that lacked the coding sequence for the KRAB (Krüppel-associated box) and Znf-C2H2 domains of Zfp69, whereas the diabetogenic SJL, NON, and NZB alleles generated a normal mRNA. When combined with the B6.V-Lepob background, the diabetogenic Zfp69SJL allele produced hyperglycaemia, reduced gonadal fat, and increased plasma and liver triglycerides. mRNA levels of the human orthologue of Zfp69, ZNF642, were significantly increased in adipose tissue from patients with type 2 diabetes. We conclude that Zfp69 is the most likely candidate for the diabetogenic effect of Nidd/SJL, and that retrotransposon IAPLTR1a contributes substantially to the genetic heterogeneity of mouse strains. Expression of the transcription factor in adipose tissue may play a role in the pathogenesis of type 2 diabetes

    Three-Dimensional Self-Assembly of Chalcopyrite Copper Indium Diselenide Nanocrystals into Oriented Films

    No full text
    CuInSe<sub>2</sub>, which is one of the highest efficiency thin-film solar cell active layer materials, has been an attractive target for nanocrystal synthesis and manipulation. Here, we report unprecedented, simultaneous control of the synthesis and self-assembly behavior of CuInSe<sub>2</sub> nanocrystals. These nanocrystals are solution-processable, monodisperse tetragonal bipyramids that exhibit photoconductivity and self-assemble into crystallographically oriented thin films. Structural characterization indicates that these nanocrystals are tetragonal phase, as is used in high-efficiency, second-generation, thin-film solar cells. Elemental analysis indicates that approximately 1:1:2 Cu/In/Se stoichiometry can be achieved, and that the elemental composition can be adjusted from copper-rich to indium-rich with reaction time
    corecore