14 research outputs found

    Middle East respiratory syndrome

    Get PDF
    The Middle East respiratory syndrome is caused by a coronavirus that was first identified in Saudi Arabia in 2012. Periodic outbreaks continue to occur in the Middle East and elsewhere. This report provides the latest information on MERS

    Liver Progenitor Cell Line HepaRG Differentiated in a Bioartificial Liver Effectively Supplies Liver Support to Rats with Acute Liver Failure

    Get PDF
    A major roadblock to the application of bioartificial livers is the need for a human liver cell line that displays a high and broad level of hepatic functionality. The human bipotent liver progenitor cell line HepaRG is a promising candidate in this respect, for its potential to differentiate into hepatocytes and bile duct cells. Metabolism and synthesis of HepaRG monolayer cultures is relatively high and their drug metabolism can be enhanced upon treatment with 2% dimethyl sulfoxide (DMSO). However, their potential for bioartificial liver application has not been assessed so far. Therefore, HepaRG cells were cultured in the Academic Medical Center bioartificial liver (AMC-BAL) with and without DMSO and assessed for their hepatic functionality in vitro and in a rat model of acute liver failure. HepaRG-AMC-BALs cultured without DMSO eliminated ammonia and lactate, and produced apolipoprotein A-1 at rates comparable to freshly isolated hepatocytes. Cytochrome P450 3A4 transcript levels and activity were high with 88% and 37%, respectively, of the level of hepatocytes. DMSO treatment of HepaRG-AMC-BALs reduced the cell population and the abovementioned functions drastically. Therefore, solely HepaRG-AMC-BALs cultured without DMSO were tested for efficacy in rats with acute liver failure (n = 6). HepaRG-AMC-BAL treatment increased survival time of acute liver failure rats ∼50% compared to acellular-BAL treatment. Moreover, HepaRG-AMC-BAL treatment decreased the progression of hepatic encephalopathy, kidney failure, and ammonia accumulation. These results demonstrate that the HepaRG-AMC-BAL is a promising bioartificial liver for clinical application

    A new probabilistic approach to estimating marine gastropod densities from baited traps

    No full text
    International audienceA new probabilistic approach is proposed to assess muricid species population abundances at scales relevant to both Ancient and Modern coastal fisheries. Motivated by the long-term goal of reconstructing the dynamics of exploited murex populations during Antiquity, the objective was to estimate the population density of the banded dye-murex, Hexaplex trunculus (Linnaeus, 1758) from successive captures with baited traps, using a method similar to the technique employed in the Mediterranean purple dye industry. The stochastic model developed simulates cumulative captures while accounting for high variability. It was calibrated with data acquired during a field trapping experiment (Crete Island, Greece). Traps' catchability and Effective Area of Attraction (EAA) were estimated using the individual speed and behavioural response towards bait from laboratory experiments. Average density of H.trunculus was estimated as 2.2 +/- 1.4SE individuals per square metre, with no significant differences between seagrass and rocky habitats. The clearing time of successive capture experiments averaged 84 +/- 6SE hr. Clearing ca. 0.4ha of subtidal area would be necessary to produce ca. 1.0g of pure Tyrian purple pigment. The method described is generalizable to making population abundance estimates for similar groups, such as whelks, in modern fisheries

    Evidence for Galalpha(1-3)Gal expression on primary porcine hepatocytes: implications for bioartificial liver systems

    No full text
    BACKGROUND/AIMS: To bridge acute liver failure (ALF) patients to orthotopic liver transplantation, several bioartificial liver (BAL) systems have been developed. The bio-component of most BAL systems consists mainly of porcine hepatocytes. Plasma or blood of ALF patients is perfused through the BAL thereby contacting porcine hepatocytes. Xenogeneic BAL systems may suffer from hyperacute rejection similar to whole-organ xenotransplants. Hyperacute rejection is mediated by antibodies directed against Galalpha(1-3)Gal, a carbohydrate structure present on most mammalian cells. Galalpha(1-3)Gal is produced by the enzyme alpha1,3-galactosyltansferase (alphaGal-T). Conflicting data have been published concerning Galalpha(1-3)Gal expression on hepatocytes in intact porcine liver. We investigated whether isolated porcine hepatocytes express Galalpha(1-3)Gal. METHODS: Immunofluorescence, flow cytometry, RT-PCR and enzyme activity assays were performed on freshly isolated and cultured porcine hepatocytes and liver biopsies. Anti-Galalpha(1-3)Gal antibodies were measured in plasma from patients treated with BAL by ELISA. RESULTS: Isolated porcine hepatocytes express (alphaGal-T) at low levels and Galalpha(1-3)Gal is present in low quantities on these cells, in contrast to hepatocytes in situ. Furthermore, IgG and IgM anti-Galalpha(1-3)Gal are depleted from the plasma of ALF patients during BAL treatment. CONCLUSIONS: Isolation and culture of porcine hepatocytes induce Galalpha(1-3)Gal expression, which may elicit immunological responses potentially compromising BAL functionalit

    Risk factors for severe outcomes following 2009 influenza A (H1N1) infection: a global pooled analysis

    Get PDF
    Background Since the start of the 2009 influenza A pandemic (H1N1pdm), the World Health Organization and its member states have gathered information to characterize the clinical severity of H1N1pdm infection and to assist policy makers to determine risk groups for targeted control measures. Methods and Findings Data were collected on approximately 70,000 laboratory-confirmed hospitalized H1N1pdm patients, 9,700 patients admitted to intensive care units (ICUs), and 2,500 deaths reported between 1 April 2009 and 1 January 2010 from 19 countries or administrative regions—Argentina, Australia, Canada, Chile, China, France, Germany, Hong Kong SAR, Japan, Madagascar, Mexico, the Netherlands, New Zealand, Singapore, South Africa, Spain, Thailand, the United States, and the United Kingdom—to characterize and compare the distribution of risk factors among H1N1pdm patients at three levels of severity: hospitalizations, ICU admissions, and deaths. The median age of patients increased with severity of disease. The highest per capita risk of hospitalization was among patients <5 y and 5–14 y (relative risk [RR] = 3.3 and 3.2, respectively, compared to the general population), whereas the highest risk of death per capita was in the age groups 50–64 y and ≥65 y (RR = 1.5 and 1.6, respectively, compared to the general population). Similarly, the ratio of H1N1pdm deaths to hospitalizations increased with age and was the highest in the ≥65-y-old age group, indicating that while infection rates have been observed to be very low in the oldest age group, risk of death in those over the age of 64 y who became infected was higher than in younger groups. The proportion of H1N1pdm patients with one or more reported chronic conditions increased with severity (median = 31.1%, 52.3%, and 61.8% of hospitalized, ICU-admitted, and fatal H1N1pdm cases, respectively). With the exception of the risk factors asthma, pregnancy, and obesity, the proportion of patients with each risk factor increased with severity level. For all levels of severity, pregnant women in their third trimester consistently accounted for the majority of the total of pregnant women. Our findings suggest that morbid obesity might be a risk factor for ICU admission and fatal outcome (RR = 36.3). Conclusions Our results demonstrate that risk factors for severe H1N1pdm infection are similar to those for seasonal influenza, with some notable differences, such as younger age groups and obesity, and reinforce the need to identify and protect groups at highest risk of severe outcomes

    Obesity is associated with impaired immune response to influenza vaccination in humans

    No full text
    BACKGROUND: Obesity is an independent risk factor for morbidity and mortality from pandemic influenza H1N1. Influenza is a significant public health threat, killing an estimated 250 000–500 000 people worldwide each year. More than one in ten of the world's adult population is obese and more than two-thirds of the US adult population is overweight or obese. No studies have compared humoral or cellular immune responses to influenza vaccination in healthy weight, overweight and obese populations despite clear public health importance. OBJECTIVE: The study employed a convenience sample to determine the antibody response to the 2009–2010 inactivated trivalent influenza vaccine (TIV) in healthy weight, overweight and obese participants at 1 and 12 months post vaccination. In addition, activation of CD8(+) T cells and expression of interferon-γ and granzyme B were measured in influenza-stimulated peripheral blood mononuclear cell (PBMC) cultures. RESULTS: Body mass index (BMI) correlated positively with higher initial fold increase in IgG antibodies detected by enzyme-linked immunosorbent assay to TIV, confirmed by HAI antibody in a subset study. However, 12 months post vaccination, higher BMI was associated with a greater decline in influenza antibody titers. PBMCs challenged ex vivo with vaccine strain virus, demonstrated that obese individuals had decreased CD8(+) T-cell activation and decreased expression of functional proteins compared with healthy weight individuals. CONCLUSION: These results suggest obesity may impair the ability to mount a protective immune response to influenza virus
    corecore