153 research outputs found

    Strain engineering for controlled growth of thin-film FeNi L10

    Get PDF
    FeNi thin films in the L1(0) phase were successfully grown by magnetron sputtering on HF-etched Si(001) substrates on Cu/Cu100-xNix buffers. The strain of the FeNi layer, (c/a)(FeNi), was varied in a controlled manner by changing the Ni content of the Cu100-xNix buffer layer from x = 0 at.% to x = 90 at.%, which influenced the common in- plane lattice parameter of the CuNi and FeNi layers. The presence of the L1(0) phase was confirmed by resonant x-ray diffraction measurements at various positions in reciprocal space. The uniaxial magnetocrystalline anisotropy energy K-U is observed to be smaller (around 0.35 MJ m(-3)) than predicted for a perfect FeNi L1(0) sample, but it is larger than for previously studied films. No notable variation in K-U with strain state (c/a)(FeNi) is observed in the range achieved (0.99 less than or similar to (c/a)(FeNi) less than or similar to 1.02), which is in agreement with theoretical predictions

    Magnetic order and energy-scale hierarchy in artificial spin ice

    Full text link
    In order to explain and predict the properties of many physical systems, it is essential to understand the interplay of different energy-scales. Here we present investigations of the magnetic order in thermalised artificial spin ice structures, with different activation energies of the interacting Ising-like elements. We image the thermally equilibrated magnetic states of the nano-structures using synchrotron-based magnetic microscopy. By comparing results obtained from structures with one or two different activation energies, we demonstrate a clear impact on the resulting magnetic order. The differences are obtained by the analysis of the magnetic spin structure factors, in which the role of the activation energies is manifested by distinct short-range order. This demonstrates that artificial spin systems can serve as model systems, allowing the definition of energy-scales by geometrical design and providing the backdrop for understanding their interplay.Comment: 8 pages, 5 figures (+ supplementary 6 pages, 4 figures

    Proximity-induced magnetism in Pt layered with rare-earth–transition-metal ferrimagnetic alloys

    Get PDF
    The proximity-induced moment (PIM) in heavy metal layers may play a significant role in heterostructured spintronic systems. In particular, the PIM of a heavy metal adjacent to a magnetic layer has been linked to interfacial spin transport behavior. Element-resolved x-ray magnetic measurements were used to investigate PIM in Pt layered with two different rare-earth (RE):3d transition-metal (TM) ferrimagnetic alloys in which the net moment was dominated by either the RE or the TM at room temperature. We observed significant PIM in Pt confined to a 2-nm interfacial region for Pt/Co77Gd23 and Pt/(Fe50Co50)77Gd23 and, in both cases, the PIM was parallel to the TM sublattice rather than the RE or the net moment. Our results highlight the prominence of the d−d mediated interactions between the Pt and the constituents of the ferrimagnetic RE:TM alloys over the net macroscopic moment

    Si1-x Ge x /Si interface profiles measured to sub-nanometer precision using uleSIMS energy sequencing

    Get PDF
    The utility of energy sequencing for extracting an accurate matrix level interface profile using ultra-low energy SIMS (uleSIMS) is reported. Normally incident O2 + over an energy range of 0.25–2.5 keV were used to probe the interface between Si0.73Ge0.27/Si, which was also studied using high angle annular dark field scanning transmission electron microscopy (HAADF-STEM). All the SIMS profiles were linearized by taking the well understood matrix effects on ion yield and erosion rate into account. A method based on simultaneous fitting of the SIMS profiles measured at different energies is presented, which allows the intrinsic sample profile to be determined to sub-nanometer precision. Excellent agreement was found between the directly imaged HAADF-STEM interface and that derived from SIMS

    Epitaxial growth of cubic MnSb on GaAs AND InGaAs(111)

    Get PDF
    The cubic polymorph of the binary transition metal pnictide (TMP) MnSb, c-MnSb, has been predicted to be a robust half-metallic ferromagnetic (HMF) material with minority spin gap ≳1 eV. Here, MnSb epilayers are grown by molecular beam epitaxy (MBE) on GaAs and In0.5Ga0.5As(111) substrates and analyzed using synchrotron radiation X-ray diffraction. We find polymorphic growth of MnSb on both substrates, where c-MnSb co-exists with the ordinary niccolite n-MnSb polymorph. The grain size of the c-MnSb is of the order of tens of nanometer on both substrates and its appearance during MBE growth is independent of the very different epitaxial strain from the GaAs (3.1%) and In0.5Ga0.5As (0.31%) substrates

    Multiple energy scales in mesospin systems : the vertex-frustrated Saint George lattice

    Get PDF
    The interplay between topology and energy hierarchy plays a vital role in the collective magnetic order in artificial ferroic systems. Here we investigate, experimentally, the effect of having one or two activation energies of interacting Ising-like magnetic islands—mesospins—in thermalized, vertex-frustrated lattices. The thermally arrested magnetic states of the elements were determined using synchrotron-based magnetic microscopy after cooling the samples from temperatures above the Curie temperature of the material. Statistical analysis of the correlations between mesospins across several length scales reveals changes in the magnetic order, reflecting the amount of ground state plaquettes realized for a vertex-frustrated lattice. We show that the latter depends on the presence, or not, of different activation energies

    The role of chemical structure on the magnetic and electronic properties of Co2FeAl0.5Si0.5/Si(111) interface

    Get PDF
    We show that Co2FeAl0.5Si0.5 film deposited on Si(111) has a single crystal structure and twin related epitaxial relationship with the substrate. Sub-nanometer electron energy loss spectroscopy shows that in a narrow interface region there is a mutual inter-diffusion dominated by Si and Co. Atomic resolution aberration-corrected scanning transmission electron microscopy reveals that the film has B2 ordering. The film lattice structure is unaltered even at the interface due to the substitu- tional nature of the intermixing. First-principles calculations performed using structural models based on the aberration corrected electron microscopy show that the increased Si incorporation in the film leads to a gradual decrease of the magnetic moment as well as significant spin-polarization reduction. These effects can have significant detrimental role on the spin injection from the Co2FeAl0.5Si0.5 film into the Si substrate, besides the structural integrity of this junction

    Magnetic and structural depth profiles of Heusler alloy Co2FeAl0.5Si0.5 epitaxial films on Si(1 1 1)

    Get PDF
    The depth-resolved chemical structure and magnetic moment of Co2FeAl0.5Si0.5, thin films grown on Si(1 1 1) have been determined using x-ray and polarized neutron reflectometry. Bulk-like magnetization is retained across the majority of the film, but reduced moments are observed within 45ËšA of the surface and in a 25ËšA substrate-interface region. The reduced moment is related to compositional changes due to oxidation and diffusion, which are further quantified by elemental profiling using electron microscopy with electron energy loss spectroscopy. The accuracy of structural and magnetic depth-profiles obtained from simultaneous modeling is discussed using different approaches with different degree of constraints on the parameters. Our approach illustrates the challenges in fitting reflectometry data from these multi-component quaternary Heusler alloy thin films
    • …
    corecore