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We show that Co2FeAl0.5Si0.5 film deposited on Si(111) has a single crystal structure and twin

related epitaxial relationship with the substrate. Sub-nanometer electron energy loss spectroscopy

shows that in a narrow interface region there is a mutual inter-diffusion dominated by Si and Co.

Atomic resolution aberration-corrected scanning transmission electron microscopy reveals that the

film has B2 ordering. The film lattice structure is unaltered even at the interface due to the substitu-

tional nature of the intermixing. First-principles calculations performed using structural models based

on the aberration corrected electron microscopy show that the increased Si incorporation in the film

leads to a gradual decrease of the magnetic moment as well as significant spin-polarization reduction.

These effects can have significant detrimental role on the spin injection from the Co2FeAl0.5Si0.5 film

into the Si substrate, besides the structural integrity of this junction. VC 2016 Author(s). All article

content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY)

license (http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4948466]

Co-based Heusler alloys have been attracting a lot of

attention due to their predicted 100% spin polarization at the

Fermi level, making them an ideal material of choice for many

spintronic applications.1–5 Among the half-metallic ferromag-

netic (HMF) full Heusler alloys of the form X2YM (X,Y: tran-

sition metals, M: main group elements), Co2FeAl0.5Si0.5
(CFAS) is of particular interest due to its high Curie tempera-

ture TC and giant tunnel magnetoresistance ratio at room tem-

perature when used as an electrode in magnetic tunnel

junctions.6 The integration of HMF materials in existing large-

scale integrated circuits technologies could enable the develop-

ment of fast and ultra-low power consumption Si-based spin-

tronic devices.7–9 Hence, a detailed knowledge of the atomic

structure and functional properties of the HMF layers grown

on Si substrates is required.10–13

The interface atomic and electronic structure is of par-

ticular importance for spin injection into semiconductors, in

general. Preserving halfmetallicity at the interface is crucial

for efficient spin injection.14 In previous work, it was shown

that the CFAS/Si heterostructure has both better interface

quality and thermal stability of the magnetic properties when

compared with those of the Co2FeSi/Si or Co2FeAl/Si heter-

ostructures.15 There is a clear evidence of formation of struc-

turally distinctive Si rich region for the case of Co2FeSi

electrode at the interface with the Si substrate, most likely

due to Si out-diffusion in the films.13,15,16 However, detailed

knowledge of the CFAS/Si chemical composition at the

interface region and how this would affect the electronic and

magnetic properties is still lacking.

In this letter, by using electron energy loss spectroscopy

(EELS), we determined the chemical composition across the

interface at a sub-nanometer scale. Combining the spectro-

scopic information with atomic resolution images from the

same region, we were able to construct realistic models of

the interface structure, which were consequently used to

understand how the local variations in chemical composition

affect the electronic and magnetic properties of the CFAS/Si

interface. The results of this work show that even for room

temperature deposition of CFAS on Si(111), a spatially lim-

ited inter-diffusion of Si, Fe, and Co is present across the

interface. The atomic resolution imaging obtained by

aberration-corrected (AC) scanning transmission electron

microscopy (STEM) shows that the lattice structure of the

film is preserved all the way up to the interface with Si,

hence the inter-diffusion is substitutional. Finally, by using

density functional theory calculations (DFT), we show that

the changes in local chemical structure result in a gradual

decrease of the magnetization over �3 nm thick region at the

interface as well as decreased spin-polarization across the

same region.

The samples were prepared by co-deposition of Co, Fe,

Si, Al using low-temperature molecular beam epitaxy.12,17 A

25nm-thick CFAS film was deposited on a pre-cleaned 10

� 10mm2 Si (111) substrate at room temperature. Prior to

loading Si(111) substrates into the chamber, their surfaces

were chemically cleaned with an aqueous 1% HF solution to

remove native oxide and contamination.12 Energy dispersivea)Electronic mail: vlado.lazarov@york.ac.uk
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x-ray spectroscopy (Hitachi HF-2000 using an accelerating

voltage of 10 kV) confirmed that the CFAS films were stoichi-

ometric. The laterally averaged film structure was assessed by

X-ray reflectivity (0.154 nm, Cu Ka), which showed strong

fringes indicating a smooth film/substrate interface.

Cross-sectional transmission electron microscopy (TEM)

samples were prepared by conventional methods that include

mechanical thinning and finishing with Ar ion milling,18 as

well as by focused ion beam methods using the FEI Nova 200

NanoLab. Selected Area electron Diffraction (SAD) was per-

formed using TEM (JEOL 2011), while the SAD simulations

were performed using CrystalKit software. Elemental distri-

bution and atomic level structural study was performed by

EELS and aberration-corrected (AC) STEM on a Nion

UltraSTEM 100 microscope equipped with a Gatan Enfina

spectrometer. The microscope was operated at 100 kV, with a

convergence angle of 30 mrad; at these optical conditions, the

electron probe size is determined to be 0.9 Å; the inner detec-

tor angle for high-angle annular dark field (HAADF) STEM

imaging and the EELS collection angle were 76 mrad and 31

mrad, respectively. The native energy spread of the electron

beam for EELS measurements was 0.3 eV; with the spectrom-

eter dispersion set at 0.2 eV/channel, this yielded an effective

energy resolution of 0.6 eV. High-angle annular dark field

(HAADF) STEM image simulations were performed using

the multislice method as implemented in the QSTEM soft-

ware package.19

First-principles calculations were performed using the

CASTEP program20 with PBEþU exchange correlation

functional and Hubbard U term set to 2.1 eV (Ref. 21) for

both Co and Fe. This value of U has previously been shown

to open up the minority bang-gap, approximately correcting

for the delocalizing effects of self-interaction with

Perdew–Burke–Ernzerhof (PBE) alone.22 Plane wave cut-off

energy was set to 600 eV, while the Brillouin zone was

sampled using Monkhorst-Pack grid with k points sampling

spacing of 0.03 2p A�1. For all considered configurations,

the lattice parameters and atoms fractional coordinates were

fully geometrically optimized. Spin-polarized Density of

States (DOS) were plotted using the OPTADOS program.23

Figure 1(a) is a low magnification HAADF STEM image

showing that the grown CFAS film has uniform thickness and

flat surface morphology. The structural abruptness of the

CFAS/Si(111) interface was additionally confirmed by X-Ray

Reflectivity measurements, as shown in supplementary Fig.

S1.24 The SAD pattern (Figure 1(b)) recorded from a region

including both the Si substrate and CFAS film demonstrates a

single crystal film, besides the lattice mismatch between

CFAS and Si of 4%. In addition, the SAD shows the specific

epitaxial relationship between the CFAS and Si, which is not

given by simple cube on cube relationship for which SAD is

simulated in Figure 1(c). In order to reveal the exact epitaxial

relationship, we performed SAD simulations for different

crystallographic relationships. The comparison between the

experimental diffraction pattern with the simulated SAD pat-

terns shows that the film/substrate epitaxy is determined by a

twinned cube-on-cube epitaxial relationship (Figure 1(d))

given by: Si(1–10)jjCFAS(-110) and Si(111)jjCFAS(111),
clearly outlining the (111) plane continuity between the sub-

strate and the film.

It is worth noting that along the [1–10] orientation of the

fully ordered L21 phase, where Co, Fe, and Al/Si occupy the

X, Y, and M sites, respectively, each atomic column is occu-

pied by single species of Co, Fe, while Al/Si share the same

atomic columns. In contrast to L21, for films with B2 order-

ing, only the Co sub-lattice (populating the X sites) is fully

ordered, whilst the Fe and Al/Si atomic species are inter-

mixed (Y-M atomic sites mixing). This allows to clearly dis-

tinguish the difference between the L21 and B2 phases of the

film when the HAADF imaging is performed along the

[1–10] crystallographic direction. These two phases can be

distinguished easily, as the contrast in these images depends

to a good approximation on the atomic number Z of the

atomic column as Zn, n� 1.7.

Figure 2(a) is an experimental image from the film region

showing the atomic columns of the CFAS in [1–10] projec-

tion. Along the [001] direction, the L21 structure consists of

alternating Co and Fe-(Si/Al) planes. In order to reveal the

structural ordering of the film, we perform image simulations

for both B2 and L21 phases. HAADF STEM image simulation

of the fully ordered L21 structural phase of CFAS is presented

in Figure 2(b) where the intensity profiles clearly distinguish

Co and Fe from Al-Si sites. If mixing between Fe and Al/Si

atomic columns occurs, the L21 ordering is lost and full inter-

mixing leads to the B2 phase. Image simulation for the B2

structural phase of CFAS is presented in Figure 2(c), showing

the same atomic column intensities on Fe-(Al/Si) plane as a

result of the intermixing. By comparing the intensity profiles

FIG. 1. (a) Low magnification HAADF

STEM image showing an overview and

confirming the thickness uniformity of

the CFAS film; (b) SAD taken along

the [1–10] zone axis from an area cov-

ering both the film and substrate. The

unit cell of the diffraction pattern is

labelled with blue solid for the film and

orange dashed rectangle for the Si sub-

strate. (c) and (d) Simulated diffraction

patterns along the (c) [1–10] viewing

direction for both CFAS and Si; (d)

[1–10] viewing direction for CFAS and

[�110] viewing direction for Si. The

correspondence between (b) and (d)

shows that the film is mirrored from

direct cube-on-cube epitaxy.
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of the atomic columns between the simulated HAADF images

for the B2 and L21 phases with the experimental HAADF

image, one can easily conclude that the as-grown CFAS film

has predominantly B2 ordering. However, this does not affect

significantly the spin polarization as well as the value of the

magnetic moment per unit cell which remains the same as in

L21 phase (5.5lB/unit cell) (DOS plots for both phases are

shown in supplementary Fig. S2).24 The B2 ordering has

also been confirmed by X-ray diffraction measurements

by the presence of (002) peak, characteristic for B2 ordering

(see supplementary Fig. S324). Note that (111) peaks charac-

teristic for L21 ordering were not observed.

While the HAADF imaging from the interface region

(supplementary Fig. S424) clearly shows the structural

abruptness of the film/substrate interface, the chemical com-

position cannot be inferred directly from HAADF images.

Hence, EELS analysis with sub-nanometer spatial resolution

was undertaken to quantify the chemical composition at the

interface region. Figure 3(a) represents the reference

HAADF image at the interface region for which EELS ele-

mental maps of Fe L2,3, Co L2,3, Si K, and Al K edges are

recorded simultaneously (Figures 3(b)–3(e)). All elemental

maps show uniform distribution of Co, Fe, Al, and Si away

from the interface region (�3 nm), while the interface region

shows significant changes in the chemical composition. The

chemical inhomogeneity near the interface is most clearly

shown by the elemental profiles across the interface (Figure

3(f)), which show simultaneous decreases of the Fe, Al, and

Co signals when approaching the interface. The most signifi-

cant feature of these profiles is the significant out-diffusion

of Si into the film within �3 nm from the interface. In addi-

tion, there is a rather low presence of Al within the first 2 nm

from the interface. The shape of the Co and Fe profiles is sig-

nificantly different. While the Fe signal decreases gradually,

the Co signal shows a pronounced shoulder near the inter-

face. This implies that the out-diffused Si is mainly substitut-

ing Fe in the CFAS lattice. The Co/Fe composition ratio

increases at the interface compared to that in the bulk-like

part of the film, also Co concentration in the Si substrate is

much larger than that of Fe. We would like to stress that de-

spite the drastic change of the chemical composition, the lat-

tice structure of the film remains unaltered, as demonstrated

in the HAADF STEM image.

The experimental data clearly show that Si is predomi-

nantly replacing Fe, which is not surprising because they

share a common atomic plane and the substitutional energy

between Y and Z sites is rather low.25 Here by employing

DFT calculations, we also show that Si substitution of Fe ver-

sus Co is energetically favorable. For this purpose, starting

from the conventional Co2FeSi 16 atoms cubic unit cell, we

create two configurations. In the first, one Si replaces one Fe

atom (i.e., Co8Fe3Si5), while in the second one, Si replaces a

Co atom (Co7Fe4Si5). Total energy calculations results show

that the formation energy of the Co7Fe4Si5 is �0.14 eV/atom,

FIG. 2. (a) HAADF STEM image showing the structural ordering of the

CFAS film viewed along the [1–10] zone axis, with overlaid structural

model. QSTEM simulated image of CFAS in (b) L21 phase, (c) B2 phase.

Colour coding of the overlaid structural models is as following: Co—blue;

Si/Al—red; Fe—brown; Fe-(Si/Al)—yellow. Insets in (a), (b), and (c) are

vertical intensity profiles from the areas labelled with the dashed rectangles.

Comparison between the intensity profile given as inset in (a) with those in

(b) and (c) clearly confirms the prevalence of the B2 phase.

FIG. 3. STEM EELS at the interface.

(a) HAADF STEM signal produced

simultaneously with the EELS acquisi-

tion. Spatially resolved EELS intensity

of (b) Fe L2,3, (c) Co L2,3, (d) Si K, and

(e) Al K edge signal. (f) Intensity pro-

files across the interface for each of the

atomic species. The dashed line is a

guide for the eye.
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while for Co8Fe3Si5 is �0.25 eV/atom. The lower formation

energy when Si replaces Fe indicates that it is more likely the

out-diffused Si to substitute Fe than Co, which is exactly what

is observed from the EELS intensity profiles. Note that Al has

been omitted from above analysis since the EELS profiles

show rather low presence of Al within the first 2 nm from the

interface.

Finally, we discuss how the chemical changes at the

interface affect the magnetic and electronic properties of this

region. Due to the presence of inter-diffusion, it is to be

expected that the interface region will show decreased per-

formance. In order to reveal the influence of the local inter-

face atomic structure on the magnetic moment and spin-

polarization, we performed DFT calculations for the eight

configurations shown in Table I. Besides the intermixing at

the interface, the overall cubic structure of the film at the very

interface has not been altered (supplementary Fig. S424).

Hence, all considered configurations have CFAS type lattice,

but with altered chemical composition.

The interface region is continuously changing from Si to

CoSix-rich and finally to the full CFAS structure. Starting

from Co2FeSi (CFS) (Al has been omitted due to very low

Al presence at the interface), we gradually replace Fe atoms

with Si in the conventional CFS cell. Therefore, four such

configurations are constructed and labelled as c1, c2, c3, and

c4, with chemical compositions shown in Table I. The table

shows that the magnetic moment gradually decreases from

24 lB per unit cell in CFS to 7.0 lB per unit cell in the c4

configuration. In addition, decrease in Co concentration will

further decrease the magnetic moment, and for the c8 config-

uration, which is stoichiometric CoSi2 structure, it becomes

equal to zero. It is worth noting that the CoSi2 structure is a

silicide compound that has a Heusler like cubic structure.

The gradual decrease of the magnetization across the inter-

face was also confirmed by polarised neutron reflectivity

measurements, not presented here. The spin-polarization also

shows a decreasing trend as illustrated by the spin-polarised

DOS for several selected configurations compared to the

DOS for the fully ordered CFS structure (supplementary Fig.

S524). The values for the spin-polarization at Fermi level for

all considered configurations are presented in Table I.

In summary, we have shown that the CFAS film depos-

ited on Si(111) has a single crystal B2 structure with twin

related epitaxial relationship with the substrate. Sub-

nanometre EELS showed that at the interface there is a mu-

tual inter-diffusion among Si, Fe, and Co over a 3 nm region.

The analysis shows that this narrow interface region is Si

rich and dominated by the presence of CoSix phases. This

indicates that Si is mainly substituting Fe which was further

supported by performing first-principles calculations. Over

the same region, due to the out-diffused Si, there is a very

low presence of Al. Atomic resolution aberration corrected

electron microscopy showed that the inter-diffusion is of

substitutional nature. This allows creation of realistic models

of the interface structure, used to perform first principles cal-

culations in order to provide insight into how the altered

chemical composition modifies the local electronic and mag-

netic properties. The calculations showed that the increased

Si incorporation in the film leads to decrease in the magnetic

moment and significant reduction of spin-polarization at the

Fermi level. These effects can have significant detrimental

role on the spin injection from CFAS into Si, besides the

structural integrity of this junction. Therefore, these phenom-

ena of intermixing, even though they are limited to very nar-

row interface region, have to be addressed in order to fully

exploit the 100% spin polarization of the CFAS electrode.
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