267 research outputs found

    The Tejon Pass Earthquake of 22 October 1916: An M 5.6 Event on the Lockwood Valley and San Andreas Faults, Southern California

    Get PDF
    On 22 October 1916, a moderate earthquake occurred in the vicinity of Tejon Pass and was felt over much of southern California. An intriguing aspect of this event involves reports of ground cracks that formed during the earthquake. We evaluate the reports of ground cracking and attempt to precisely locate the cracks with respect to active faults; we infer that the earthquake produced minor fault rupture along a newly discovered trace of the easternmost Lockwood Valley fault (formerly mapped as the easternmost Big Pine fault) and/or along the San Andreas fault. We also re-evaluate and present new intensity data, and we use a grid-search algorithm (derived from empirical analysis of modern earthquakes) to find the magnitude most consistent with the reported intensities. Although previous authors have attempted to use intensity data to constrain the magnitude of this event, the algorithm we use provides an alternative and statistically more robust determination of the magnitude. Our results suggest M 5.6 (-0.3/+0.2) (at 95% confidence) for the 1916 event, which is consistent with earlier work. The 1916 earthquake appears to have been a rare and remarkable event in terms of its size and location and the production of minor surface rupture

    Recent and Long-Term Behavior of the Brawley Fault Zone, Imperial Valley, California: An Escalation in Slip Rate?

    Get PDF
    The Brawley fault zone (bfz) and the Brawley Seismic Zone constitute the principal transfer zone accommodating strain between the San Andreas and Imperial faults in southernmost California. The bfz ruptured along with the Imperial fault in the 1940 M_w 6.9 and the 1979 M_w 6.4 earthquakes, although in each case only minor slip apparently occurred on the bfz; several other episodes of slip and creep have been documented on the bfz historically. Until this study, it has been unclear whether the past few decades reflect average behavior of the fault. Two trenches were opened and a series of auger holes were bored across three strands of the bfz at Harris Road to compare the amount of slip observed historically with the displacements observed in the paleoseismic record. Evidence is presented, across the westernmost strand of the bfz and across the entire bfz at Harris Road, to show that both the average vertical slip rate observed in modern times (since 1970) and the vertical creep rate (excluding coseismic slip) observed during the 1970s are significantly higher than the long-term average. Across the westernmost strand, the long- term vertical rate is 1.2 (+1.5/−0.5) mm/yr, and the average rate since about a.d. 1710 is determined to be no greater than 2.0 mm/yr; in contrast, the average vertical rate between 1970 and 2004 across that strand was at least 4.3 mm/yr, and the 1970s vertical aseismic creep rate was 10 mm/yr. Likewise, across the entire bfz, the long- term vertical rate is 2.8 (+4.1/−1.4) mm/yr, whereas the rate between 1970 and 2004 was at least 7.2 mm/yr, and the 1970s aseismic creep rate was 10 mm/yr. The long-term strike-slip rate cannot be determined across any strands of the bfz but may be significant. In contrast to the commonly accepted higher sedimentation rates inferred for the entire Imperial Valley, we find that the average sedimentation rate on the downthrown side of the bfz adjacent to Mesquite Basin, in the millennium preceding the onset of agricultural influences, was at most 3.5 mm/yr. Finally, a creep event occurred on the bfz during our study in 2002 and is documented herein

    Supplementary materials for: Variable slip mode in the past 3300 years on the fault ruptured in the 2012 M 5.6 Pernik slow earthquake in Bulgaria

    Get PDF
    Supplementary materials for the paper Variable slip mode in the past 3300 years on the fault ruptured in the 2012 M 5.6 Pernik slow earthquake in Bulgaria submitted to Natural Hazards. The Supplementary materials contain high-resolution photomosaics of the trench excavated on the Meshtitsa fault, a X-ray diffractogram, locations of the ground cracks observed after the 2012 Pernik earthquake in a Keyhole Markup Language (KML) file format, and resistivity data collected across the Meshtitsa fault scarp in the format used by the Boundless Electrical Resistivity Tomography (BERT) software

    Evidence for prehistoric earthquakes on the Superstition Hills fault from offset geomorphic features

    Get PDF
    Offset geomorphic features along the Superstition Hills fault show evidence for at least one slip event prior to the 1987 surface rupture, and possibly as many as four to five earlier prehistoric earthquakes. We documented several geomorphic features that appeared offset by multiple events by making detailed topographic maps. Offset features were abundant along reaches of the fault with high topographic relief and large displacement. Slip distribution for the penultimate event, as recorded by offset rills, streams, and shrub-coppice dunes, is very similar to the slip distribution from the 1987 earthquake through April 1988. This similarity may prove to be fortuitous if afterslip from the 1987 event continues to increase the total slip for this earthquake. But if afterslip associated with the 1987 event ceases in the near future, then the past two earthquakes were nearly identical in slip, and the Superstition Hills fault may be expected to produce characteristic earthquakes of roughly magnitude 6œ

    Timing and nature of alluvial fan and strath terrace formation in the Eastern Precordillera of Argentina

    Get PDF
    Sixty-eight 10Be terrestrial cosmogenic nuclide (TCN) surface exposure ages are presented to define the timing of alluvial fan and strath terrace formation in the hyper-arid San Juan region of the Argentine Precordillera. This region is tectonically active, and numerous fault scarps traverse Quaternary landforms. The three study sites, Marquesado strath complex, Loma Negra alluvial fan and CarpinterĂ­a strath complex reveal a history of alluvial fan and strath terrace development over the past w225 ka. The Marquesado complex Q3m surface dates to w17 3 ka, whereas the Loma Negra Q1ln, Q2ln, Q3ln, Q4ln, and Q5ln surfaces date to w24 3 ka, w48 2 ka, w65 13 ka, w105 21 ka, and w181 29 ka, respectively. The CarpinterĂ­a complex comprises eight surfaces that have been dated and include the Q1c (w23 3 ka), Q2c (w5 5 ka), Q3ac (w25 12 ka), Q3bc (w29 15 ka), Q4c (w61 12 ka), Q5c (w98 18 ka), Q6c (w93 18 ka), and Q7c (w212 37 ka). 10Be TCN depth profile data for the Loma Negra alluvial fan complex and CarpinterĂ­a strath terrace complex, as well as OSL ages on some CarpinterĂ­a deposits, aid in refining surface ages for comparison with local and global climate proxies, and additionally offer insights into inheritance and erosion rate values for TCNs (w10 104 10Be atoms/g of SiO2 and w5 m Ma 1, respectively). Comparison with other alluvial fan studies in the region show that less dynamic and older preserved surfaces occur in the CarpinterĂ­a and Loma Negra areas with only younger alluvial fan surfaces preserved both to the north and south. These data in combination with that of other studies illustrate broad regional agreement between alluvial fan and strath terrace ages, which suggests that climate is the dominant forcing agent in the timing of terrace formation in this region

    Temperature dependence of strain in ZnSe(epilayer)/GaAs(epilayer)

    Get PDF
    doi:10.1063/1.360477A study of biaxial strain as a function of temperature in a ZnSe epilayer grown on a GaAs substrate is presented. The strains are determined by measuring the heavy‐ and light‐hole related excitonic transitions via photomodulated spectroscopy. The strain is found to increase with increasing temperature. The data are compared with a calculation using a previously determined elastic constant and thermal expansion coefficients. The temperature dependence determined here allows a comparison of various other optical measurements performed at different temperatures.The work by H. R. C. was supported in part by the U. S. Department of Energy under Contract No. DE-FG02-89ER45402. M. C. acknowledges the support from the U.S. Army Research Office DAAL-03-92-G0381. A. K.. R. acknowledges support from the National Science Foundation (Materials Research Group No. DMR89-13706) and R. L. G. from AFOSR-89-0438; both A. K. R. and R. L. G. also acknowledge support from DARPA-URI Grant No. 218-25015. We thank Lok C. Lew Yan Voon and L. R. Ram-Mohan for many stimulating discussions

    Evidence for two surface ruptures in the past 500 years on the San Andreas fault at Frazier Mountain

    Get PDF
    Abstract We conducted paleoseismic studies in a closed depression along the San Andreas fault on the north flank of Frazier Mountain near Frazier Park, California. We recognized two earthquake ruptures in our trench exposure and interpreted the most recent rupture, event 1, to represent the historical 1857 earthquake. We also exposed evidence of an earlier surface rupture, event 2, along an older group of faults that did not rerupture during event 1. Radiocarbon dating of the stratigraphy above and below the earlier event constrains its probable age to between A.D. 1460 and 1600. Because we documented continuous, unfaulted stratigraphy between the earlier event horizon and the youngest event horizon in the portion of the fault zone exposed, we infer event 2 to be the penultimate event. We observed no direct evidence of an 1812 earthquake in our exposures. However, we cannot preclude the presence of this event at our site due to limited age control in the upper part of the section and the possibility of other fault strands beyond the limits of our exposures. Based on overlapping age ranges, event 2 at Frazier Mountain may correlate with event B at the Bidart fan site in the Carrizo Plain to the northwest and events V and W4 at Pallett Creek and Wrightwood, respectively, to the southeast. If the events recognized at these multiple sites resulted from the same surface rupture, then it appears that the San Andreas fault has repeatedly failed in large ruptures similar in extent to 1857

    Recency of Faulting and Subsurface Architecture of the San Diego Bay Pull-Apart Basin, California, USA

    Get PDF
    In Southern California, plate boundary motion between the North American and Pacific plates is distributed across several sub-parallel fault systems. The offshore faults of the California Continental Borderland (CCB) are thought to accommodate ∌10–15% of the total plate boundary motion, but the exact distribution of slip and the mechanics of slip partitioning remain uncertain. The Newport-Inglewood-Rose Canyon fault is the easternmost fault within the CCB whose southern segment splays out into a complex network of faults beneath San Diego Bay. A pull-apart basin model between the Rose Canyon and the offshore Descanso fault has been used to explain prominent fault orientations and subsidence beneath San Diego Bay; however, this model does not account for faults in the southern portion of the bay or faulting east of the bay. To investigate the characteristics of faulting and stratigraphic architecture beneath San Diego Bay, we combined a suite of reprocessed legacy airgun multi-channel seismic profiles and high-resolution Chirp data, with age and lithology controls from geotechnical boreholes and shallow sub-surface vibracores. This combined dataset is used to create gridded horizon surfaces, fault maps, and perform a kinematic fault analysis. The structure beneath San Diego Bay is dominated by down-to-the-east motion on normal faults that can be separated into two distinct groups. The strikes of these two fault groups can be explained with a double pull-apart basin model for San Diego Bay. In our conceptual model, the western portion of San Diego Bay is controlled by a right-step between the Rose Canyon and Descanso faults, which matches both observations and predictions from laboratory models. The eastern portion of San Diego Bay appears to be controlled by an inferred step-over between the Rose Canyon and San Miguel-Vallecitos faults and displays distinct fault strike orientations, which kinematic analysis indicates should have a significant component of strike-slip partitioning that is not detectable in the seismic data. The potential of a Rose Canyon-San Miguel-Vallecitos fault connection would effectively cut the stepover distance in half and have important implications for the seismic hazard of the San Diego-Tijuana metropolitan area (population ∌3 million people)

    Refining seismic parameters in low seismicity areas by 3D trenching: The Alhama de Murcia fault, SE Iberia.

    Get PDF
    Three-dimensional paleoseismology in strike-slip faults with slip rates less than 1 mm per year involves a great methodological challenge. We adapted 3D trenching to track buried channels offset by the Alhama de Murcia seismogenic left-lateral strike-slip fault (SE Iberia). A fault net slip of 0.9 +/- 0.1 mm/yr was determined using statistical analysis of piercing lines for one buried channel, whose age is constrained between 15.2 +/- 1.1 ka and 21.9-22.3 cal BP. This value is larger and more accurate than the previously published slip rates for this fault: The minimum number of five paleo-earthquakes identified since the deposition of dated layers suggests a maximum average recurrence interval of approximately 5 ka. The combination of both seismic parameters yields a maximum slip per event between 53 and 63 m. We show that accurately planned trenching strategies and data processing may be key to obtaining robust paleoseismic parameters in low seismicity areas. (C) 2016 Elsevier B.V. All rights reserved
    • 

    corecore