1,324 research outputs found

    Probabilistic prediction of rupture length, slip and seismic ground motions for an ongoing rupture: implications for early warning for large earthquakes

    Get PDF
    Earthquake EarlyWarning (EEW) predicts future ground shaking based on presently available data. Long ruptures present the best opportunities for EEW since many heavily shaken areas are distant from the earthquake epicentre and may receive long warning times. Predicting the shaking from large earthquakes, however, requires some estimate of the likelihood of the future evolution of an ongoing rupture. An EEW system that anticipates future rupture using the present magnitude (or rupture length) together with the Gutenberg-Richter frequencysize statistics will likely never predict a large earthquake, because of the rare occurrence of ‘extreme events’. However, it seems reasonable to assume that large slip amplitudes increase the probability for evolving into a large earthquake. To investigate the relationship between the slip and the eventual size of an ongoing rupture, we simulate suites of 1-D rupture series from stochastic models of spatially heterogeneous slip. We find that while large slip amplitudes increase the probability for the continuation of a rupture and the possible evolution into a ‘Big One’, the recognition that rupture is occurring on a spatially smooth fault has an even stronger effect.We conclude that anEEWsystem for large earthquakes needs some mechanism for the rapid recognition of the causative fault (e.g., from real-time GPS measurements) and consideration of its ‘smoothness’. An EEW system for large earthquakes on smooth faults, such as the San Andreas Fault, could be implemented in two ways: the system could issue a warning, whenever slip on the fault exceeds a few metres, because the probability for a large earthquake is high and strong shaking is expected to occur in large areas around the fault. A more sophisticated EEW system could use the present slip on the fault to estimate the future slip evolution and final rupture dimensions, and (using this information) could provide probabilistic predictions of seismic ground motions along the evolving rupture. The decision on whether an EEW system should be realized in the first or in the second way (or in a combination of both) is user-specific

    Real-time Finite Fault Rupture Detector (FinDer) for large earthquakes

    Get PDF
    To provide rapid estimates of fault rupture extent during large earthquakes, we have developed the Finite Fault Rupture Detector algorithm, ‘FinDer’. FinDer uses image recognition techniques to detect automatically surface-projected fault ruptures in real-time (assuming a line source) by estimating their current centroid position, length L, and strike θ. The approach is based on a rapid high-frequency near/far-source classification of ground motion amplitudes in a dense seismic network (station spacing <50 km), and comparison with a set of pre-calculated templates using ‘Matching by Correlation’. To increase computational efficiency, we perform the correlation in the wavenumber domain. FinDer keeps track of the current dimensions of a rupture in progress. Errors in L are typically on the same order as station spacing in the network. The continuously updated estimates of source geometries as provided by FinDer make predicted shaking intensities more accurate and thus more useful for earthquake early warning, ShakeMaps, and related products. The applicability of the algorithm is demonstrated for several recorded and simulated earthquakes with different focal mechanisms, including the 2009 M_w 6.3 L’Aquila (Italy), the 1999 M_w 7.6 ChiChi (Taiwan) and the M_w 7.8 ShakeOut scenario earthquake on the southern San Andreas Fault (California)

    Multiple blood-brain barrier transport mechanisms limit bumetanide accumulation, and therapeutic potential, in the mammalian brain

    Get PDF
    There is accumulating evidence that bumetanide, which has been used over decades as a potent loop diuretic, also exerts effects on brain disorders, including autism, neonatal seizures, and epilepsy, which are not related to its effects on the kidney but rather mediated by inhibition of the neuronal Na-K-C1 cotransporter isoform NKCC1. However, following systemic administration, brain levels of bumetanide are typically below those needed to inhibit NKCC1, which critically limits its clinical use for treating brain disorders. Recently, active efflux transport at the blood-brain barrier (BBB) has been suggested as a process involved in the low brain:plasma ratio of bumetanide, but it is presently not clear which transporters are involved. Understanding the processes explaining the poor brain penetration of bumetanide is needed for developing strategies to improve the brain delivery of this drug. In the present study, we administered probenecid and more selective inhibitors of active transport carriers at the BBB directly into the brain of mice to minimize the contribution of peripheral effects on the brain penetration of bumetanide. Furthermore, in vitro experiments with mouse organic anion transporter 3 (Oat3)-overexpressing Chinese hamster ovary cells were performed to study the interaction of bumetanide, bumetanide derivatives, and several known inhibitors of Oats on Oat3-mediated transport. The in vivo experiments demonstrated that the uptake and efflux of bumetanide at the BBB is much more complex than previously thought. It seems that both restricted passive diffusion and active efflux transport, mediated by Oat3 but also organic anion-transporting polypeptide (Oatp) Oatpla4 and multidrug resistance protein 4 explain the extremely low brain concentrations that are achieved after systemic administration of bumetanide, limiting the use of this drug for targeting abnormal expression of neuronal NKCC1 in brain diseases

    VLT Spectroscopy of Globular Cluster Systems, I. The Photometric and Spectroscopic Dataset

    Get PDF
    We present Lick line-index measurements of extragalactic globular clusters in seven early-type galaxies (NGC 1380, 2434, 3115, 3379, 3585, 5846, and 7192) with different morphological types (E-S0) located in field and group/cluster environments. High-quality spectra were taken with the FORS2 instrument at ESO's Very Large Telescope. About 50% of our data allow an age resolution dt/t ~ 0.3 and a metallicity resolution ~0.25-0.4 dex, depending on the absolute metallicity. Globular cluster candidates are selected from deep B, V, R, I, K FORS2/ISAAC photometry with 80-100% success rate inside one effective radius. Using combined optical/near-infrared colour-colour diagrams we present a method to efficiently reduce fore-/background contamination down to <10%. We find clear signs for bi-modality in the globular cluster colour distributions of NGC 1380, 3115, and 3585. The colour distributions of globular clusters in NGC 2434, 3379, 5846, and 7192 are consistent with a broad single-peak distribution. For the analysed globular cluster systems the slopes of projected radial surface density profiles, of the form Sigma(R) ~ R^-Gamma, vary between ~0.8 and 2.6. Using globular clusters as a tracer population we determine total dynamical masses of host galaxies out to large radii (~1.6 - 4.8 Reff). For the sample we find masses in the range ~8.8*10^10 Msolar up to ~1.2*10^12 Msolar. The line index data presented here will be used in accompanying papers of this series to derive ages, metallicities and abundance ratios. A compilation of currently available high-quality Lick index measurements for globular clusters in elliptical, lenticular, and late-type galaxies is provided and will serve to augment the current data set. [abridged]Comment: A&A accepted, 42 page

    Unveiling a Rich System of Faint Dwarf Galaxies in the Next Generation Fornax Survey

    Full text link
    We report the discovery of 158 previously undetected dwarf galaxies in the Fornax cluster central regions using a deep coadded u,gu, g and ii-band image obtained with the DECam wide-field camera mounted on the 4-meter Blanco telescope at the Cerro Tololo Interamerican Observatory as part of the {\it Next Generation Fornax Survey} (NGFS). The new dwarf galaxies have quasi-exponential light profiles, effective radii 0.1 ⁣< ⁣re ⁣< ⁣2.80.1\!<\!r_e\!<\!2.8 kpc and average effective surface brightness values 22.0 ⁣< ⁣μi ⁣< ⁣28.022.0\!<\!\mu_i\!<\!28.0 mag arcsec2^{-2}. We confirm the existence of ultra-diffuse galaxies (UDGs) in the Fornax core regions that resemble counterparts recently discovered in the Virgo and Coma galaxy clusters.~We also find extremely low surface brightness NGFS dwarfs, which are several magnitudes fainter than the classical UDGs. The faintest dwarf candidate in our NGFS sample has an absolute magnitude of Mi ⁣= ⁣8.0M_i\!=\!-8.0\,mag. The nucleation fraction of the NGFS dwarf galaxy sample appears to decrease as a function of their total luminosity, reaching from a nucleation fraction of > ⁣75%>\!75\% at luminosities brighter than Mi ⁣ ⁣15.0M_i\!\simeq\!-15.0 mag to 0%0\% at luminosities fainter than Mi ⁣ ⁣10.0M_i\!\simeq\!-10.0 mag. The two-point correlation function analysis of the NGFS dwarf sample shows an excess on length scales below  ⁣100\sim\!100 kpc, pointing to the clustering of dwarf galaxies in the Fornax cluster core.Comment: 6 pages, 3 figures. Accepted for publication in The Astrophysical Journal Letters. Download the high-resolution version of the paper from the following link: https://www.dropbox.com/s/xb9vz8s29wlzjgf/ms.pdf?dl=

    Maternal neurofascin-specific autoantibodies bind to structures of the fetal nervous system during pregnancy, but have no long term effect on development in the rat

    Get PDF
    Neurofascin was recently reported as a target for axopathic autoantibodies in patients with multiple sclerosis (MS), a response that will exacerbate axonal pathology and disease severity in an animal model of multiple sclerosis. As transplacental transfer of maternal autoantibodies can permanently damage the developing nervous system we investigated whether intrauterine exposure to this neurofascin-specific response had any detrimental effect on white matter tract development. To address this question we intravenously injected pregnant rats with either a pathogenic anti-neurofascin monoclonal antibody or an appropriate isotype control on days 15 and 18 of pregnancy, respectively, to mimic the physiological concentration of maternal antibodies in the circulation of the fetus towards the end of pregnancy. Pups were monitored daily with respect to litter size, birth weight, growth and motor development. Histological studies were performed on E20 embryos and pups sacrificed on days 2, 10, 21, 32 and 45 days post partum. Results: Immunohistochemistry for light and confocal microscopy confirmed passively transferred anti-neurofascin antibody had crossed the placenta to bind to distinct structures in the developing cortex and cerebellum. However, this did not result in any significant differences in litter size, birth weight, or general physical development between litters from control mothers or those treated with the neurofascin-specific antibody. Histological analysis also failed to identify any neuronal or white matter tract abnormalities induced by the neurofascin-specific antibody. Conclusions: We show that transplacental transfer of circulating anti-neurofascin antibodies can occur and targets specific structures in the CNS of the developing fetus. However, this did not result in any pre- or post-natal abnormalities in the offspring of the treated mothers. These results assure that even if anti-neurofascin responses are detected in pregnant women with multiple sclerosis these are unlikely to have a negative effect on their children

    Control of human endometrial stromal cell motility by PDGF-BB, HB-EGF and trophoblast-secreted factors

    Get PDF
    Human implantation involves extensive tissue remodeling at the fetal-maternal interface. It is becoming increasingly evident that not only trophoblast, but also decidualizing endometrial stromal cells are inherently motile and invasive, and likely contribute to the highly dynamic processes at the implantation site. The present study was undertaken to further characterize the mechanisms involved in the regulation of endometrial stromal cell motility and to identify trophoblast-derived factors that modulate migration. Among local growth factors known to be present at the time of implantation, heparin-binding epidermal growth factor-like growth factor (HB-EGF) triggered chemotaxis (directed locomotion), whereas platelet-derived growth factor (PDGF)-BB elicited both chemotaxis and chemokinesis (non-directed locomotion) of endometrial stromal cells. Supernatants of the trophoblast cell line AC-1M88 and of first trimester villous explant cultures stimulated chemotaxis but not chemokinesis. Proteome profiling for cytokines and angiogenesis factors revealed neither PDGF-BB nor HB-EGF in conditioned media from trophoblast cells or villous explants, while placental growth factor, vascular endothelial growth factor and PDGF-AA were identified as prominent secretory products. Among these, only PDGF-AA triggered endometrial stromal cell chemotaxis. Neutralization of PDGF-AA in trophoblast conditioned media, however, did not diminish chemoattractant activity, suggesting the presence of additional trophoblast-derived chemotactic factors. Pathway inhibitor studies revealed ERK1/2, PI3 kinase/Akt and p38 signaling as relevant for chemotactic motility, whereas chemokinesis depended primarily on PI3 kinase/Akt activation. Both chemotaxis and chemokinesis were stimulated upon inhibition of Rho-associated, coiled-coil containing protein kinase. The chemotactic response to trophoblast secretions was not blunted by inhibition of isolated signaling cascades, indicating activation of overlapping pathways in trophoblast-endometrial communication. In conclusion, trophoblast signals attract endometrial stromal cells, while PDGF-BB and HB-EGF, although not identified as trophoblast-derived, are local growth factors that may serve to fine-tune directed and non-directed migration at the implantation site

    Phylogenetic relationships of species of Raymunida (Decapoda: Galatheidae) based on morphology and mitochondrial cytochrome oxidase sequences, with the recognition of four new species

    Get PDF
    19 pages.-- RECEIVED: 10 April 2000, ACCEPTED: 8 November 2000.The species of the genus Raymunida from the Pacific and Indian oceans are revised using morphological characters and the mitochondrial cytochrome oxidase subunit I sequences. Four new species are described (R. confundens, R. dextralis, R. erythrina, and R. insulata), and the status of R. bellior and R. elegantissima are revised. The species of Raymunida can be identified by subtle morphological characters, which match differences in mitochondrial nucleotide sequences. Therefore, the sequence divergences confirm the specific and phylogenetic value of some morphological characters (e.g., length of the mesial spine on the basal antennal segment, length of the walking legs). Furthermore, they confirm the importance of the color pattern as a diagnostic character. The widespread species (R. elegantissima), known from the Philippines to Fiji, shows minimal divergence between specimens from different localities (maximum of 3 nucleotide differences or 0.2% mean divergence). The phylogenetic reconstruction agreed with the monophyletic condition of Raymunida and its differentiation with respect to the genus Munida (in which Raymunida species had previously been included) and Agononida.Peer reviewe
    corecore