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a b s t r a c t

There is accumulating evidence that bumetanide, which has been used over decades as a potent loop
diuretic, also exerts effects on brain disorders, including autism, neonatal seizures, and epilepsy, which
are not related to its effects on the kidney but rather mediated by inhibition of the neuronal Na-K-Cl
cotransporter isoform NKCC1. However, following systemic administration, brain levels of bumetanide
are typically below those needed to inhibit NKCC1, which critically limits its clinical use for treating brain
disorders. Recently, active efflux transport at the blood-brain barrier (BBB) has been suggested as a
process involved in the low brain:plasma ratio of bumetanide, but it is presently not clear which
transporters are involved. Understanding the processes explaining the poor brain penetration of
bumetanide is needed for developing strategies to improve the brain delivery of this drug. In the present
study, we administered probenecid and more selective inhibitors of active transport carriers at the BBB
directly into the brain of mice to minimize the contribution of peripheral effects on the brain penetration
of bumetanide. Furthermore, in vitro experiments with mouse organic anion transporter 3 (Oat3)-
overexpressing Chinese hamster ovary cells were performed to study the interaction of bumetanide,
bumetanide derivatives, and several known inhibitors of Oats on Oat3-mediated transport. The in vivo
experiments demonstrated that the uptake and efflux of bumetanide at the BBB is much more complex
than previously thought. It seems that both restricted passive diffusion and active efflux transport,
mediated by Oat3 but also organic anion-transporting polypeptide (Oatp) Oatp1a4 and multidrug
resistance protein 4 explain the extremely low brain concentrations that are achieved after systemic
administration of bumetanide, limiting the use of this drug for targeting abnormal expression of
neuronal NKCC1 in brain diseases.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The blood-brain barrier (BBB), which functions as a protective
barrier to shield the brain from neurotoxic substances, consists of a
physical barrier formed primarily by the endothelial tight junctions
and a transport barrier resulting from efflux transporters expressed
in the endothelial membrane (Abbott et al., 2010). Efflux transport
at the BBB limits the brain tissue exposure to a variety of thera-
peutic agents, including compounds that are highly lipophilic and
would easily permeate through the BBB in the absence of efflux
transport (L€oscher and Potschka, 2005a). Drug efflux at the BBB is
thought to be mainly mediated by ABC transporters such as P-
glycoprotein (P-gp; ABCB1), breast cancer resistance protein (BCRP;

Abbreviations: BBB, blood-brain barrier; BCEC, brain capillary endothelial cell;
BCRP, breast cancer resistance protein; BUM5, N,N-dimethylaminoethylester of
bumetanide; BUM13, 5-(anilinomethyl)-3-(butylamino)-2-phenoxy-benzenesulfo-
namide; CHO, Chinese hamster ovary; CSF, cerebrospinal fluid; HPLC, high perfor-
mance liquid chromatography; i.c.v., intracerebroventricular; MCT, monocarboxylic
acid transporter; MRP, multidrug resistance protein; NKCC, Na-K-Cl cotransporter;
Oat, organic anion transporter; Oatp, organic anion-transporting polypeptide; PAH,
para-aminohippuric acid; P-gp, P-glycoprotein; SLC, solute carrier.
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ABCG2) and members of the multidrug resistance protein (MRP;
ABCC) family expressed at the luminal (apical) site of brain capillary
endothelial cells (BCECs), but members of the multispecific organic
anion transporter (OAT; SLC22A) and organic anion-transporting
polypeptide (OATP; SLCO) families may also contribute to drug
efflux (Sun et al., 2003; Ohtsuki, 2004; Kusuhara and Sugiyama,
2005; L€oscher and Potschka, 2005b; Urquhart and Kim, 2009). In
rodents, particularly Oat3 (Slc22a8) and Oatp1a4 (Slco1a4; previ-
ously termed Oatp2) are expressed at the BBB and are thought to be
involved in drug transport (Ohtsuki, 2004; Kusuhara and Sugiyama,
2005; L€oscher and Potschka, 2005b; Urquhart and Kim, 2009). Oat3
is predominantly expressed at the abluminal (basolateral) mem-
brane of BCECs, takes up its substrates from brain interstitial fluid
into BCECs and so plays a major role in the brain-to-blood efflux
transport system of a broad range of compounds (Ohtsuki, 2004;
Kusuhara and Sugiyama, 2005; VanWert et al., 2010; Burckhardt,
2012). Oatp1a4 is expressed in both the luminal and the ablumi-
nal membranes of brain capillary endothelial cells and can mediate
the transcellular transport of amphipathic organic anions across
the BBB in both the blood-to-brain and brain-to-blood directions
(Ose et al., 2010). In humans, OAT3 (SLC22A8) is also involved in
drug efflux at the BBB, whereas OATP1A2 (SLCO1A2), the closest
counterpart of rodent Oatp1a4, seems to mainly mediate drug
uptake into the brain (Urquhart and Kim, 2009).

The loop diuretic bumetanide is long known to be a substrate of
OAT3/Oat3 in the kidney, which, together with other OATs, medi-
ates its uptake into renal tissue and allows bumetanide to reach its
target Na-K-Cl cotransporter NKCC (Burckhardt, 2012). Recently,
Donovan et al. (2015, 2016) suggested that OAT3/Oat3 also medi-
ates the efflux of bumetanide at the BBB, thus significantly
contributing to the low brain levels of bumetanide obtained after
systemic administration (L€oscher et al., 2013). Apart from its
diuretic effect, which is mediated by the NKCC isoform NKCC2,
bumetanide blocks NKCC1 and is the only available selective in-
hibitor of this NKCC isoform (L€oscher et al., 2013). Overexpression
of NKCC1 in neurons is thought to be involved in several brain
diseases, including neonatal seizures and temporal lobe epilepsy,
the most common type of epilepsy in adult patients (Kahle et al.,
2008; Blaesse et al., 2009; Ben-Ari et al., 2012; L€oscher et al.,
2013; Kaila et al., 2014). This attracted substantial interest in using
bumetanide as a rational therapy for treating such brain diseases.
However, the poor brain penetration of bumetanide limits its use
and is a likely explanation for the failure of clinical trials (L€oscher
et al., 2013; Puskarjov et al., 2014; Pressler et al., 2015). Donovan
et al. (2015, 2016) proposed to increase brain levels of bumeta-
nide by inhibiting its brain efflux. However, systemic administra-
tion of the Oat inhibitor probenecid in rats increased bumetanide
levels in both plasma and brain without any alteration in brain:-
plasma ratio (Donovan et al., 2015), indicating that the increased
brain levels of bumetanide were a consequence of Oat inhibition in
the kidney, resulting in reduced clearance of bumetanide. Similar
data were reported by our group in mice (T€ollner et al., 2015), so
that it is presently not clear whether bumetanide is subject to
active efflux transport at the BBB and, if so, which transporters are
involved. Indeed, the low brain concentrations reached after sys-
temic administration of bumetanide (brain:plasma ratio
~0.01e0.02 in adult rodents) could also be a consequence of its high
ionization rate (>99%) at physiological pH and its high plasma
protein binding (>95%), which restrict brain entry of bumetanide
by passive diffusion (L€oscher et al., 2013; Puskarjov et al., 2014).

In the present study, we administered probenecid and more
selective inhibitors of active transport carriers at the BBB directly
into the brain of mice to minimize the contribution of peripheral
effects on the brain penetration of bumetanide. Furthermore,
in vitro experiments with mouse Oat3-overexpressing Chinese

hamster ovary (CHO) cells were performed to study the interaction
of bumetanide, bumetanide derivatives, and several known Oat
inhibitors on Oat3-mediated transport as a basis for the in vivo
experiments.

2. Materials and methods

2.1. Animals

Outbred NMRI mice were obtained from Charles River (Sulzfeld,
Germany). Body weight at arrival was 20e25 g. As in our previous
experiments with bumetanide (T€ollner et al., 2014, 2015; T€opfer
et al., 2014), female animals were used, because they usually
eliminate drugs more slowly than males and can be kept in groups
more easily. Animals were housed under controlled conditions
(ambient temperature 22e24 �C, humidity 30e50%, lights on from
6:00 a.m. to 6:00 p.m.) and adapted to the laboratories for at least
one week before being used in the experiments. Food (Altromin
1324 standard diet) and water were freely available.

Experiments were performed according to the EU council
directive 2010/63/EU and the German Law on Animal Protection
(“Tierschutzgesetz”). Ethical approval for the study was granted by
an ethical committee (according to x15 of the Tierschutzgesetz) and
the government agency (Lower Saxony State Office for Consumer
Protection and Food Safety; LAVES) responsible for approval of
animal experiments in Lower Saxony (reference number for this
project: 15/1825). All efforts were made to minimize both the
suffering and the number of animals.

2.2. Drugs and chemicals

If not stated otherwise, drugs or chemicals (cf., Fig. 1) were
purchased from Sigma-Aldrich (Munich, Germany) and were of
analytical grade. For the in vivo experiments, bumetanide was
dissolved in an aqueous 10% solution of hydroxypropyl-b-cyclo-
dextrin (HPbCD; Kleptoses, Roquette-Pharma, Frankfurt, Germany)
as described previously (T€ollner et al., 2014, 2015; T€opfer et al.,
2014). For intracerebroventricular (i.c.v.) injection, probenecid,
para-aminohippuric acid (PAH) and sodium taurocholic acid were
dissolved (PAH by means of 1 mM NaOH) in artificial cerebrospinal
fluid (CSF; pH adjusted to 7.4 with HCl). Elacridar hydrochloride
was provided by GlaxoSmithKline (Research Triangle Park, NC) and
dissolved in CSF containing 0.15% Cremophor EL® (Caelo; Hilden,
Germany). In most in vivo experiments, methylene blue was
included in the artificial CSF as described below. For in vitro
transport experiments bumetanide was used as commercial solu-
tion (0.5 mg/ml) of the sodium salt of bumetanide (Burinex), which
was kindly provided by Leo Pharma (Ballerup, Denmark) and
diluted in Opti-MEM® (Gibco®/Life Technologies Corporation). The
bumetanide derivatives Bum5 (T€ollner et al., 2014) and Bum13
(Lykke et al., 2015) were synthesized by one of us (T.E.) and dis-
solved in dimethyl sulfoxide for in vitro experiments. Fluorescein
(Invitrogen™/Life Technologies Corporation; Darmstadt, Germany)
was dissolved in phosphate buffered saline. Probenecid (by means
of 1 mM NaOH) and cimetidine were dissolved in distilled water,
PAH in Opti-MEM®medium (Gibco®/Life Technologies Corporation,
Darmstadt, Germany; pH adjusted to 7.4 with HCl), and digoxin in
dimethyl sulfoxide.

2.3. Pharmacokinetic experiments with probenecid in mice

Since previous experiments on potential BBB transport of
bumetanide have been performed with systemic administration of
probenecid, using 50 mg/kg in mice (T€ollner et al., 2015) and rats
(Donovan et al., 2015), we examined whether this systemic dose of
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probenecid results in brain concentrations known to inhibit Oats.
Probenecid, 50 mg/kg, was administered i.p. and groups of mice
were killed either after 45, 60 or 75 min for determination of
probenecid in plasma and brain. Probenecid (Sigma-Aldrich;
Munich, Germany) was dissolved in saline (by means of dilute
NaOH) and injected with an injection volume of 10 ml/kg.

In a subsequent series of experiments, we administered
different doses of probenecid (25, 50 or 150 mg) into the right
lateral ventricle of mice under anesthesia with isoflurane. These
i.c.v. doses of probenecid would result in molar brain concentra-
tions of 0.175, 0.35 and 1.05 mM probenecid, assuming homoge-
neous brain distribution and an average mouse brain weight of
0.5 g. For comparison, an intracerebral concentration of 2.2 mM
probenecid has been reported to completely inhibit brain efflux of
the Oat3 dehydroepiandrosterone sulfate substrate in mice
(Miyajima et al., 2011). However, such calculation ignores that
probenecid diffusion into brain tissue after i.c.v. injection will not
be homogeneous throughout the brain and that the drug will be
rapidly eliminated, so that this calculation overestimates the brain
concentrations of probenecid reached after i.c.v. injection (see
Results). For i.c.v. injection, probenecid was injected in a volume
of 10 ml, using the technique described by Kim et al. (1998) and
Laursen and Belknap (1986). The probenecid solution contained
0.16% methylene blue ((3,7-bis(dimethylamino)-phenothiazin-5-
ium chloride; Fig. 1) to verify correct injection in the ventricle
after killing the animals either 15 or 45 min following i.c.v. in-
jection. Only animals with correct injection were used for final
data analyses. Probenecid was determined in plasma and brain
(separately in each hemisphere) as described below.

2.4. Effects of i.c.v. probenecid on bumetanide brain levels in mice

In a first series of experiments, different doses of probenecid
(25, 50 or 150 mg) were administered i.c.v. (into the right lateral
ventricle), followed 15 min later by i.v. administration of bumeta-
nide. Controls received i.c.v. injections of vehicle (artificial CSF)
with methylene blue (which was also included in the probenecid
solutions). Anesthesia with isoflurane was not maintained after
i.c.v. injection of probenecid, so that mice were conscious at time of
bumetanide administration and blood and brain sampling. Bume-
tanide was injected at a dose of 10 mg/kg i.v. with an injection
volume of 10 ml/kg in groups of mice. Mice were killed 30min after
bumetanide for bumetanide analysis in plasma and brain. In a
second series of experiments, only the highest dose of probenecid
(150 mg) was injected i.c.v. and bumetanide (10 mg/kg i.v.) was
immediately injected after probenecid (within 1e2 min) or 30 min
after probenecid and mice were killed 15 min after bumetanide for
bumetanide analysis in plasma and brain.

2.5. Effects of i.c.v. para-aminohippuric acid (PAH) on bumetanide
brain levels in mice

Probenecid is not a selective inhibitor of Oat3 but also inhibits
other Oats, several Oatps and MRPs (see Discussion and Table 1).
We therefore included another widely used Oat inhibitor, PAH
(Fig. 1), which has been shown to be transported by Oat3 but not
Oatp1a4 at the mouse BBB and inhibits Oat3 at high concentrations
(Kikuchi et al., 2003; Miyajima et al., 2011; see also Table 1). In a
first experiment, two different doses of PAH (50 and 100 mg/10 ml)
were injected into the right lateral ventricle immediately followed
(within 1e2 min) by i.v. administration of bumetanide (10 mg/kg

Fig. 1. Chemical structures of the compounds used in this study. Note the structural similarities among compounds; i.e., bumetanide, bumetanide derivatives, and probenecid
contain a sulfonamide group, and both methylene blue and fluorescein are tricyclic structures.
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i.v.). Assuming homogeneous brain distribution and an average
mouse brainweight of 0.5 g, these i.c.v. doses of PAHwould result in
molar brain concentrations of 0.51 and 1.03 mM, respectively. Mice
were killed 15 min after bumetanide for bumetanide analysis in
plasma and brain. In a second experiment, higher doses of PAH
(250, 500, and 1000 mg/10 ml) were injected i.c.v. Because convul-
sions were observed at these doses (see Results), the experiment
with 250 mg was repeated in mice in which anesthesia with iso-
flurane was maintained over the duration of the experiment. As in
the experiments with probenecid, methylene blue was included in
the PAH solution in the majority of experiments. Controls received
i.c.v. injections of artificial CSF with methylene blue.

2.6. Effects of i.c.v. taurocholate on bumetanide brain levels in mice

Additional experiments were performed with taurocholate
(Fig. 1) to determine whether Oatp1a4, which is not inhibited by
PAH, is involved in brain efflux of bumetanide. As shown in Table 1,
taurocholate is 20 times more potent to inhibit Oatp1a than Oat3.
Taurocholate (dissolved as its sodium salt) was injected at a dose of
108 mg/10 ml in two experiments; in one experiment, isofluranewas
only used for i.c.v. injection, whereas in the other experiments
anesthesia was maintained for the whole duration of the experi-
ment (see Results). Assuming homogeneous brain distribution and
an average mouse brain weight of 0.5 g, this i.c.v. dose of taur-
ocholate would result in a molar brain concentration of 0.4 mM. As
in the experiments with probenecid and PAH, methylene blue was
included in the taurocholate solution in the majority of experi-
ments. Controls received i.c.v. injections of artificial CSF with
methylene blue.

2.7. Effects of i.c.v. elacridar and methylene blue on bumetanide
brain levels in mice

We previously observed a moderate but statistically significant
transport of bumetanide in Bcrp-overexpressing pig kidney LLC-
PK1 cells (T€ollner et al., 2015), so that we determined whether in-
hibition of brain Bcrp increases bumetanide levels in the brain. For
this purpose we used elacridar (Fig. 1), which potently inhibits P-gp
and Bcrp in vitro and in vivo (Matsson et al., 2009; Bankstahl et al.,
2013), and injected this compound i.c.v. at a dose of 0.03 mg/10 ml.
Assuming homogeneous brain distribution and an average mouse
brain weight of 0.5 g, these i.c.v. dose of elacridar would result in
molar brain concentration of 0.1 mM. The effect of elacridar on P-gp
was without relevance for these experiments, because we previ-
ously reported that bumetanide is not a P-gp substrate (T€ollner
et al., 2015).

The phenothiazine derivative methylene blue (Fig. 1), an old
antimalarial drug that is widely used as a stain in biology and
medicine, recently has been reported to be a partial substrate of P-
gp and MRP2 (Senarathna et al., 2016). To exclude that inclusion of
this compound for verifying the i.c.v. injection site interfered with
bumetanide efflux from the brain, we compared bumetanide levels

in control experiments with artificial CSF with or without methy-
lene blue. Assuming homogeneous brain distribution and an
average mouse brain weight of 0.5 g, the i.c.v. dose of methylene
blue administered with artificial CSF would result in a molar brain
concentration of 0.1 mM.

2.8. Analysis of bumetanide and probenecid

For analysis of bumetanide in brain, animals were decapitated
and brain samples were immediately homogenized (about 50 mg
brain tissue in 1 ml distilled water), centrifuged for 20 min at
15,000 rpm at 4 �C, and the supernatant was purified by solid phase
extraction, using a Chromabond HR-X column (Macherey-Nagel;
Düren; Germany). Bumetanide was extracted from the column by
methanol, the extract was evaporated to dryness by nitrogen, the
residue was dissolved in 100 ml buffer, and 20 ml were used for
analysis by high performance liquid chromatography (HPLC) as
recently described in detail (Brandt et al., 2010). For analysis of
bumetanide in plasma, blood was sampled after decapitation,
centrifuged and plasma samples were stored deep-frozen until
HPLC analysis as described previously (Brandt et al., 2010; T€ollner
et al., 2014). As standard for HPLC analysis, we used a commercial
solution (0.5 mg/ml) of the sodium salt of bumetanide (Burinex).
The detection limit for bumetanide was about 50 ng/ml in plasma
with a retention time of 9.0 min and 100 ng/g (¼ 0.28 mM) in brain
tissue with a retention time of 12.0 min.

The concentration of probenecid in plasma and brain was
determined by HPLC under comparable conditions, and with the
same sample preparation like for analysis of bumetanide. Detection
limit in plasma was about 300 ng/ml and retention time was
7.5 min.

The analysis of compounds in the brain did not consider the
blood volume in the brain, because preliminary experiments, in
which brain bumetanide levels in mice with and without brain
perfusion were compared, did not indicate any significant differ-
ence in these levels. For these experiments, mice were perfused via
the aorta with 0.01 M phosphate buffer under anesthesia with
chloral hydrate 30 min after i.v. administration of 10 mg/kg
bumetanide. Brain levels were compared to those of mice receiving
the same treatment but killed without perfusion. Average brain
levels of bumetanide were 0.15 mg/g without perfusion vs. 0.14 mg/g
with perfusion, respectively, so that all experiments described in
the Results section were performed without perfusion.

2.9. In vitro transport experiments with bumetanide

For studying the in vitro potencies of probenecid, PAH and
several other compounds to inhibit Oat3-mediated transport of
bumetanide, Chinese hamster ovary (CHO) cells expressing mouse
Oat3 and respective mock-transfected cells were used. These cell
lines, which were first described by VanWert and Sweet (2008),
were generated by one of us (D.H.S.) and provided for the present
experiments. Oat3-mediated transport of [3H]bumetanide

Table 1
Inhibitory potencies of probenecid, para-aminohippurate (PAH) and taurocholate for Oat3, Oatp1a4 (previously termed Oatp2), and MRP4. Inhibitory potencies are presented
as Ki values determined in rodent transporter expressing LLC-PK1 cells, except as noted for MRP4. For probenecid and PAH on Oat3, the range of values determined in different
studies is shown. Bumetanide was not used in any of these studies.

Transport inhibitor Ki (mM) Reference

Oat3 Oatp1a4 (Oatp2) MRP4a

Probenecid 1e20 73 <100 mM Sugiyama et al., 2001; Van Aubel et al., 2002; VanWert et al., 2010
PAH 300e1350 >5000 ? (Km 160 mM) Sugiyama et al., 2001; Smeets et al., 2004; VanWert et al., 2010
Taurocholate 790 39.4 ? Sugiyama et al., 2001; VanWert et al., 2010

a Human MRP4-expressing Sf9 vesicles.

K. R€omermann et al. / Neuropharmacology 117 (2017) 182e194 185



(Hartmann Analytic, Braunschweig, Germany; specific activity: 555
GBq/mmol) was evaluated by an uptake assay as described by
VanWert and Sweet (2008) and Hasannejad et al. (2004) with some
modifications. Cells were seeded with a density of 0.4 � 106 cells/
well on 12-well plates (Greiner Bio-One, Frickenhausen, Germany),
and cultured in DMEM without antibiotics. The uptake assay was
performed in triplicate two days after seeding. Culturemediumwas
replaced by serum-free Opti-MEM® medium (Gibco®/Life Tech-
nologies Corporation) with or without respective inhibitor for
10 min pre-incubation, followed by 5 min incubation at 37 �C on
orbital shaker at 55 rpm with a final concentration of 100 nM
bumetanide, including [3H]bumetanide diluted with cold bumeta-
nide to an activity concentration of 3.7 kBq/ml (with or without
inhibitor). After the medium was removed on ice, the cells were
washed with ice-cold phosphate-buffered saline, lysed in lysis
buffer (25 mM Tris, pH 8, 50 mM NaCl, 0.5% (w/v) sodium deoxy-
cholate 0.5% (w/v), Triton X-100) and the amount of [3H]-accu-
mulation in the cells was quantified with a b-scintillation-counter
(Microbeta Trilux, Perkin Elmer). This was normalized to the
amount of total cell protein, which was determined by BCA™
protein assay kit (Thermo Scientific, Rockford, USA).

The following compounds were tested as inhibitors of Oat3-
mediated transport of bumetanide (Fig. 1): probenecid (1 mM),
PAH (0.1 and 5 mM), cimetidine (1 mM), digoxin (10 mM), BUM5
(430 mM), a lipophilic prodrug of bumetanide (the N,N-dimethyla-
minoethylester; T€ollner et al., 2014), and BUM13 (430 mM), a
bumetanide derivative (5-(anilinomethyl)-3-(butylamino)-2-
phenoxy-benzenesulfonamide) in which the carboxylic group was
replaced by an anilinomethyl group (Lykke et al., 2015). The idea
behind testing BUM5 was that we recently observed in mice that
following administration of equimolar doses of bumetanide and
BUM5, plasma levels of bumetanide are higher after BUM5, but the
diuretic effect is significantly lower, indicating that BUM5 may
inhibit the Oat3-mediated uptake of bumetanide in the kidney
(T€ollner et al., 2014). BUM13 was included to evaluate whether the
carboxylic group of bumetanide is a prerequisite for its transport by
Oat3. For both bumetanide derivatives, also concentration:effect
experiments were performed, with concentrations ranging from 5
to 430 mM. These experiments were performed as described above,
but with an incubation period prolonged to 20 min on 96-well
plates (white Isoplates for liquid scintillation counting, Perkin
Elmer, Rodgau, Germany). Concentrations of compounds used were
based on previous in vitro or in vivo studies (Sugiyama et al., 2001;
VanWert and Sweet, 2008; VanWert et al., 2010; T€ollner et al., 2014;
Lykke et al., 2015). Digoxin was included as “negative control”,
because at the concentration used (10 mM), it should not inhibit
Oat3 (Sugiyama et al., 2001; VanWert et al., 2010).

In additional experiments, uptake of the Oat3 substrate fluo-
rescein (Fig. 1) was used to determine inhibition of Oat3-mediated
transport (Wolman et al., 2013). The uptake assays were performed
as described above, with 10 mM fluorescein instead of [3H]bume-
tanide. The fluorescein uptake was measured with the FLUOstar
OPTIMA spectrofluorometer (BMG Labtech, Ortenberg, Germany).
The effects of bumetanide, probenecid, BUM5, and BUM13 on
fluorescein uptake were compared at various concentrations, and
IC50s were determined. A sigmoidal model with variable slope was
used to analyze concentration:effect relationships by nonlinear
regression.

2.10. Statistics

Statistical analyses were performed using GraphPad Prism 6.0
software (San Diego, CA, US). Either parametric or nonparametric
tests were used for statistical evaluation, depending on data dis-
tribution. For comparison of two groups, either Student's t-test or

the Mann-Whitney U test was used. In case of more than two
groups we used analysis of variance (ANOVA) with post hoc testing
and correction for multiple comparisons. Depending on data dis-
tribution, either the ANOVA F-test, followed posthoc by Dunnett's
multiple comparison test, or the Kruskal-Wallis test followed
posthoc by Dunn's multiple comparisons test were used. All tests
were two-sided; a p � 0.05 was considered significant. G*Power
Data Analysis (Faul et al., 2007) was used to calculate the necessary
sample size for a specified power of 80%. For this calculation, effect
size and variation of data were estimated from preliminary exper-
iments with i.c.v. administration of probenecid. Pharmacokinetic
analyses were performed by the software PK-Solutions (Summit
Research Services, Montrose, CO, U.S.A.).

3. Results

3.1. Pharmacokinetic experiments with probenecid in mice

In a first experiment, we administered probenecid systemically
at a dose (50 mg/kg) that has previously been used to evaluate
whether bumetanide is subject to transport by Oat3 at the BBB
(Donovan et al., 2015; T€ollner et al., 2015). As shown in Fig. 2A,
plasma concentrations of probenecid rapidly declined from 45 to
75 min after administration with an average half-life of 0.5 h.
Compared to the high plasma concentrations of probenecid
(average maximal concentration ¼ 54.9 mg/ml), much lower drug
levels were determined in the brain (Fig. 2A). The average maximal
brain concentration was 3.04 mg/g, which corresponds to 10.5 mM
and is far below the probenecid levels that have been reported to
inhibit Oat3 in the rodent brain in vivo (Miyajima et al., 2011). The
brain:plasma concentration ratio of probenecid was about 0.05
(Fig. 2A), indicating that only 5% of the plasma concentration
reached the brain.

Next, we determined probenecid concentrations in brain and
plasma following unilateral i.c.v. administration inmice (Fig. 2B). As
expected, only very low plasma concentrations of probenecid were
determined, which were in the range of 10e20% of brain concen-
trations. Brain levels after i.c.v. administration of probenecid were
higher in the ipsilateral (right) than contralateral hemisphere and
dose-dependently increased over the tested dose range (Fig. 2B). At
the highest i.c.v. dose (150 mg), average whole brain levels were
39 mg/g (¼ 137 mM) in the ipsilateral and 18.6 mg/g (¼ 65 mM) in the
contralateral hemispherewhen being determined 45min after i.c.v.
administration. In an additional experiment, we determined pro-
benecid in plasma and brain ~15 min after i.c.v. injection of pro-
benecid (not illustrated). Brain concentrations were 179 ± 24.3 mg/
kg (¼ 620 mM) in the ipsilateral and 87.4 ± 6.07 mg/kg (¼ 306 mM) in
the contralateral hemisphere, respectively. The ipsilateral proben-
ecid concentration (0.62 mM) determined ~15 min after adminis-
tration was somewhat lower than the calculated concentration
(1.05 mM; see Methods), which is obviously due to the rapid
elimination of probenecid in mice. Plasma levels 15 min after
150 mg probenecid were 8.3 ± 1.02 mg/ml, corresponding to a
plasma:brain ratio of 0.046.

Systemic administration of probenecid (50 mg/kg i.p.) was
tolerated without any obvious adverse effects, whereas the highest
i.c.v. dose of probenecid (150 mg) induced ptosis, hunched posture
and ruffled fur, which was observed for about 40 min after
administration. No adverse effects were observed after the lower
i.c.v. doses.

3.2. Effects of i.c.v. probenecid on bumetanide brain levels in mice

When probenecid was i.c.v. injected at different doses 15 min
before i.v. administration of bumetanide (10 mg/kg) and
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bumetanide levels in plasma and brain were determined 30 min
later, a significant increase of bumetanide concentrations in the
brain was only observed after the highest dose (150 mg) of pro-
benecid (Fig. 3A). The increase in bumetanide brain levels was the
same in the left and right hemisphere, so that one may conclude
that probenecid brain levels of at least ~300 mM were needed for
inhibiting bumetanide efflux at the BBB, based on the probenecid
brain levels determined in the pharmacokinetic experiments (see
above). Bumetanide brain levels were in the range of 0.22e0.27 mg/
g (0.62e0.76 mM) and were doubled by 150 mg probenecid i.c.v. As
reported previously by us in mice (T€ollner et al., 2014; T€opfer et al.,
2014), the brain:plasma ratio of bumetanide was only about 0.01
and was significantly increased by 150 mg probenecid (Fig. 3A). A
moderate (27%) but statistically significant increase of bumetanide
plasma levels was only determined at the highest dose of pro-
benecid. This small increase in plasma levels could not explain the
~100% increase in brain levels of bumetanide, thus clearly indi-
cating that probenecid inhibited active efflux of bumetanide from
the brain.

In a subsequent experiment, 150 mg probenecid were injected
i.c.v. immediately (1e2 min) before i.v. administration of bumeta-
nide (10 mg/kg), and brain and plasma levels of bumetanide were
determined 15 min later (Fig. 3B). Brain levels of bumetanide were
increased from 0.48 mg/g (1.35 mM) in vehicle controls to ~1.4 mg/g
(~3.9 mM) in probenecid-treated mice, i.e., an increase of 190%.
Plasma levels of bumetanide were not significantly altered. The
brain:plasma ratio significantly increased from 0.01 to ~0.03, i.e., a

significant increase of about 200%. When probenecid was admin-
istered 30 min before bumetanide and mice were killed 15 min
later, no significant effect of probenecid on brain levels of bume-
tanide was obtained (Fig. 3B), indicating that the timing of i.c.v.
probenecid administrationwas critical for any effect on brain efflux
of bumetanide.

3.3. Effects of i.c.v. PAH on bumetanide brain levels in mice

As shown in Fig. 4A, neither 50 nor 100 mg PAH, injected i.c.v.
into the right lateral ventricle of mice, significantly altered brain or
plasma levels of bumetanide, when PAHwas administered 1e2min
before bumetanide and mice were killed 15 min later. This
prompted us to further increase the i.c.v. dose of PAH. At 250 and
500 mg PAH, significant increases of bumetanide brain levels and
bumetanide brain:plasma ratio were observed, but these increases
were restricted to the contralateral (left) hemisphere. Furthermore,
generalized convulsive seizures with running and bouncing and
mortality were observed within a few minutes after injection.
When the i.c.v. dose of PAH was further increased to 1000 mg, sei-
zures became so severe that the experiment was terminated after 2
mice (data not shown).

To exclude that the increased bumetanide brain levels were due
to seizure-induced BBB disruption, the experiment with 250 mg
PAH was repeated under anesthesia with isoflurane for the whole
duration of the experiment, which blocked seizures and mortality.
As shown in Fig. 4A, a significant increase in bumetanide

Fig. 2. Plasma and brain concentrations of probenecid after systemic (A) or i.c.v. (B) administration of probenecid in mice. Data are shown as means ± SEM. For the data shown in
(A), 50 mg/kg probenecid were administered i.p. and blood and brain were sampled after 45, 60, and 75 min in groups of 6e11 mice. For the data shown in (B), probenecid was i.c.v.
injected at 25, 75, or 150 mg into the right lateral ventricle in groups of 4 (25 mg), 2 (75 mg) or 8 (150 mg) mice, respectively, and blood and brains were sampled after 45 min. For
determination of brain levels in (A), the whole brain was used, whereas for (B), probenecid was determined separately in the left (contralateral) and right (ipsilateral) hemisphere.
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brain:plasma ratio of ~40% above control was observed in both
hemispheres.

3.4. Effects of i.c.v. taurocholate on bumetanide brain levels in mice

In a first experiment, taurocholate (108 mg/10 ml) was injected
i.c.v. without maintenance of anesthesia. Since running and
bouncing was observed in part of the mice, the experiment was
repeated under anesthesia. As shown in Fig. 4B, significant in-
creases in bumetanide brain levels and brain:plasma ratio were
observed in both experiments. The increase in brain:plasma ratio
under anesthesia, which was significant in both hemispheres, was
in the range of 30e50% above control.

3.5. Effects of i.c.v. elacridar and methylene blue on bumetanide
brain levels in mice

The P-gp/Bcrp inhibitor elacridar did not affect bumetanide
levels after i.c.v. injection in mice (Fig. 4B). Potential effects of
methylene blue were evaluated by comparing vehicle control ex-
periments with and without methylene blue. Ipsilateral brain:-
plasma ratios of bumetanide from such experiments were
0.012 ± 0.0027 (mean ± S.D. of 39 mice) with methylene blue vs.
0.013 ± 0.0046 (mean ± SEM of 13 mice) without methylene blue
(P ¼ 0.1613), indicating that methylene blue did not affect bume-
tanide transport at the BBB under these conditions.

3.6. In vitro transport experiments with bumetanide

In CHO cells transfected with murine Oat3, transport of
bumetanide was 4e7 times greater than nonspecific uptake in
mock-transfected CHO cells (Fig. 5). If the data obtained with Oat3
inhibitors were background corrected to the mock levels, pro-
benecid (1 mM) almost completely inhibited the Oat3-mediated
uptake of bumetanide, while digoxin (10 mM) was ineffective as
expected (Fig. 5A). PAH reduced bumetanide uptake by 24% at
100 mM and 68% at 5 mM, respectively (Fig. 5A,C). Cimetidine
(1 mM) reduced bumetanide uptake by 35%. The bumetanide
derivative BUM5 (430 mM) inhibited bumetanide uptake
completely and was therefore as effective as probenecid (Fig. 5C).
The bumetanide derivative BUM13 (430 mM) was slightly less
effective than BUM5 in this regard, inhibiting bumetanide uptake
by ~88% (Fig. 5C)). When testing various concentrations of BUM5
and BUM13 on bumetanide uptake, an IC50 of 5 mM was deter-
mined for BUM13, whereas BUM5 inhibited bumetanide almost
completely at 5 mM (not illustrated). None of these compounds
significantly reduced the unspecific uptake of bumetanide in
mock-transfected CHO cells.

When using fluorescein instead of bumetanide for uptake
studies in CHO cells transfected with murine Oat3, probenecid
(1 mM) and BUM13 (430 mM) inhibited the uptake of fluorescein
by 86% and 91%, respectively (not illustrated). When concen-
tration:effect experiments were performed for determining IC50s,
BUM13 (IC50 18.32 mM) was about as potent to inhibit fluorescein

Fig. 3. Effect of i.c.v. administration of probenecid on brain and plasma levels of bumetanide. For the data shown in (A), probenecid (Prob) was i.c.v. injected at 25, 75, or 150 mg into
the right lateral ventricle in groups of 4 (25 mg), 2 (75 mg) or 8 (150 mg) mice, respectively, 15 min before bumetanide (10 mg/kg i.v.) and blood and brains were sampled 30 min after
bumetanide. Data were compared to those of mice that received drug vehicle (Veh; artificial CSF) instead of probenecid (n ¼ 4, 2, and 6 for the 3 vehicle experiments performed
concurrently with the probenecid experiments). For the data shown in (B), probenecid was i.c.v. injected at a dose of 150 mg into the right lateral ventricle in groups of 3 mice either
1e2 or 30 min before bumetanide (10 mg/kg i.v.) and blood and brains were sampled 15 min after bumetanide. Groups of 2 or 3 mice were treated concurrently with vehicle instead
of probenecid. Data are shown as means ± SEM. Significant differences between probenecid-treated mice and vehicle controls are indicated by asterisk (*P < 0.05; **P < 0.0001).
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uptake as bumetanide (21.8 mM), but more potent than BUM5
(75 mM).

4. Discussion

Donovan et al. (2015, 2016) recently proposed that bumetanide
is subject to efflux transport by Oat3 at the BBB. This proposal was
based on (1) increase of bumetanide levels in brain dialysates
collected from the hippocampus in rats, following intra-arterial
administration of probenecid (50 mg/kg), and (2) bidirectional
transport studies with bumetanide in human OAT3-transfected
Madin-Darby canine kidney (MDCK) cells, in which basolateral-
to-apical bumetanide transport was inhibited by probenecid and
benzylpenicillin. However, as also shown by our recent study with
systemic administration of probenecid in mice (T€ollner et al., 2015),
the in vivo increase in brain bumetanide levels was most likely a
consequence of increased plasma levels, due to inhibition of Oat3 in

the kidney, and not a result of inhibition of BBB efflux. The present
pharmacokinetic data on probenecid clearly substantiate the latter
interpretation, because systemic administration of probenecid (50
mg/kg) did not lead to brain levels high enough to inhibit Oat3 or
other efflux transporters at the BBB in vivo.

Indeed, after i.p. injection of probenecid in mice, a brain:plasma
ratio of only about 0.05 was determined with maximum brain
concentrations of only ~10 mM. Previous experiments, in which
unbound probenecid levels in plasma were compared with pro-
benecid levels in the brain interstitial fluid, brain tissue and CSF in
rats, found that the efflux clearance of probenecid from brain to
plasma was 5-times greater than the influx clearance, indicating
that active efflux at the BBB is involved in the low brain concen-
trations of probenecid (Deguchi et al., 1997). Probenecid (4-
(dipropylsulfamoyl)benzoic acid) is a relatively strong acid
(pka¼ 3.4), with a high ionization rate at physiological pH and high
protein binding (85e95%) (Grosser et al., 2011), both of which limit

Fig. 4. Effect of i.c.v. administration of p-aminohippuric acid (PAH), taurocholate (Tau), and elacridar (Ela) on brain and plasma levels of bumetanide. For the data shown for
“without anesthesia”, anesthesia with isoflurane was terminated directly after i.c.v. injection, whereas anesthesia was maintained over the whole duration of the experiment for the
data shown for “anesthesia” to block seizures otherwise induced by PAH and taurocholate (see Results). For the data shown in (A) under “without anesthesia”, PAH was i.c.v. injected
at doses of 50e500 mg into the right lateral ventricle in groups of 4 (50 mg), 3 (100 mg), 4 (250 mg), and 5 (500 mg) mice, respectively, 1e2 min before bumetanide (10 mg/kg i.v.) and
blood and brains were sampled 15 min after bumetanide. Data were compared to those of mice (n ¼ 3) that received drug vehicle (Veh; artificial CSF) instead of probenecid. For the
data shown in (A) under “anesthesia”, PAH was i.c.v. injected at a dose of 200 mg into the right lateral ventricle in a group of 8 mice 1e2 min before bumetanide (10 mg/kg i.v.) and
blood and brains were sampled 15 min after bumetanide. Data were compared to those of mice (n ¼ 4) that received drug vehicle (Veh; artificial CSF) instead of probenecid. Data are
shown as means ± SEM. Significant differences between PAH-treated mice and vehicle controls are indicated by asterisk (*P < 0.05; **P < 0.01). For the data shown in (B) under
“without anesthesia”, taurocholate and elacridar were i.c.v. injected at a dose of 108 (Tau) or 0.03 mg (Ela) into the right lateral ventricle in groups of 5 (Tau) or 3 (Ela) mice,
respectively, 1e2 min before bumetanide (10 mg/kg i.v.) and blood and brains were sampled 15 min after bumetanide. Data were compared to those of mice (n ¼ 4) that received
drug vehicle (artificial CSF) instead of taurocholate or elacridar. For the data shown in (B) under “anesthesia”, taurocholate was i.c.v. injected at a dose of 108 mg into the right lateral
ventricle in a group of 10 mice 1e2 min before bumetanide (10 mg/kg i.v.) and blood and brains were sampled 15 min after bumetanide. Data were compared to those of mice
(n ¼ 4) that received drug vehicle (artificial CSF) instead of taurocholate or eleacridar. Data are shown as means ± SEM. Significant differences between taurocholate-treated mice
and vehicle controls are indicated by asterisk (*P < 0.05; **P < 0.01).
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its penetration into the brain by passive diffusion. Furthermore,
active brain efflux of probenecid by MRPs, the monocarboxylic acid
transport (MCT) system, Bcrp, PAH-sensitive organic anion trans-
port systems (most likely including Oat3) of the solute carrier (SLC)
superfamilies, and possibly other transporters at the BBB further
reduces its brain levels (Deguchi et al., 1997; Roch-Ramel, 1998;
Sugiyama et al., 2001; Merino et al., 2006; Vijay and Morris, 2014).
Thus, at the high doses or concentrations commonly used, pro-
benecid is not a selective inhibitor of Oat3, but inhibits other Oats,
several Oatps, MRPs and MCTs that are expressed at the BBB
(Sugiyama et al., 2001; Sun et al., 2003; VanWert et al., 2010; Vijay
and Morris, 2014). As a consequence, based on the data reported by
Donovan et al. (2015, 2016) with bumetanide and probenecid, it is
not possible to conclude that the low brain levels of bumetanide,
which we first reported in rats (Brandt et al., 2010), are a result of
active efflux by Oat3 at the BBB.

This prompted us to use i.c.v. administration of probenecid and
more selective Oat and Oatp inhibitors as a means to determine
whether bumetanide is subject to active brain efflux in mice and
which transporters are involved in this efflux. Intracerebral or i.c.v.
administration of probenecid, PAH and other inhibitors of BBB
transporters is widely used to study the uptake and efflux of drugs
across the BBB in rodents (Laursen and Belknap, 1986; Kakee et al.,
1996; Kusuhara and Sugiyama, 2004, 2005; Glascock et al., 2011).
By direct injection of low doses of a transport inhibitor into the
brain, inhibition of peripheral transporters in kidney and liver is

minimized. Of the various members of the SLC transporter families,
only Oat3 and Oatp1a4 (previously termed Oatp2) seem to be
expressed at the rodent BBB at functionally relevant levels (Kamiie
et al., 2008; Urquhart and Kim, 2009; Uchida et al., 2011). Oat3 is
predominantly expressed at the abluminal (basolateral) membrane
of BCECs andmay eliminate its substrates out of the brain in concert
with luminal (apical) efflux transporters such as Bcrp or Mrps
(Fig. 6). However, lower expression of Oat3 has also been reported
for the luminal membrane of rat BCECs (Kikuchi et al., 2003). Both
Oat3 and Oatp1a4 are inhibited by probenecid (Sugiyama et al.,
2001, Table 1). Bumetanide is long known to be transported by
Oat3 (and other Oats) in the kidney (Burckhardt, 2012), but, to our
knowledge, it is not established whether it is also a substrate of
Oatp1a4. In Xenopus laevis oocytes expressing OAT3 or Oatp1a4,
saturable uptake of bumetanide was reported for both transporters,
but this study is as yet only available in abstract form (Goda et al.,
2010). Interestingly, both probenecid and bumetanide have been
shown to inhibit Oatp1a1 (previously termed Oatp1), another
member of the Oatp family (Schwab et al., 2001). In addition,
bumetanide is a substrate and inhibitor of MRP4 (Uchida et al.,
2007; Hasegawa et al., 2007), which is expressed at the luminal
membrane of BCECs, including the mouse BBB (Leggas et al., 2004;
Kusuhara and Sugiyama, 2005; Kamiie et al., 2008), and acts as an
efflux transporter, which is inhibited by probenecid (Van Aubel
et al., 2002; Leggas et al., 2004). In an in vivo study that is as yet
only available in abstract form, Goda et al. (2010) reported saturable

Fig. 5. In vitro transport experiments with bumetanide in mouse Oat3-transfected CHO cells. Active transport of [3H]-bumetanide was measured over 5 min by an uptake assay (see
Methods). CHO cells transfected with an empty vector (“mock”) were used as controls. As shown in (A) and (C), Oat3-transfected CHO cells exhibited a higher uptake of bumetanide
than mock-transfected CHO cells (B, D). The uptake of bumetanide in Oat3-transfected CHO cells was significantly inhibited by probenecid (1 mM), p-aminohippuric acid (PAH;
100 mM in A, 5 mM in C), cimetidine (1 mM), and the bumetanide derivatives BUM5 (430 mM) and BUM13 (430 mM), but not digoxin (10 mM). Data are shown in percent of Oat3
transport in Oat3-transfected cells without inhibitor as means ± SEM of 3 samples per inhibitor. Significant differences to bumetanide alone are indicated by asterisks (*P < 0.05;
**P < 0.0001).
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bumetanide efflux from the rat brain that appeared to be mediated
by a combination of Oat3 and Oatp1a4 as indicated by the effects of
inhibitors of Oat3 (PAH, cimetidine) and Oatp1a4 (taurocholate and
digoxin). In apparent contrast, the MRP4 inhibitor indomethacin
waswithout effect on bumetanide efflux from the brain (Goda et al.,
2010). However, most of the transport inhibitors used by Goda et al.
(2010) are not specific. For instance, digoxin is also a substrate of P-
gp (Wessler et al., 2013), which prompted us to study whether
bumetanide is a substrate of this major efflux transporter (T€ollner
et al., 2015). No P-gp-mediated transport of bumetanide was
observed in P-gp-overexpressing pig kidney LLC-PK1 cells, whereas
a moderate but statistically significant transport was observed in
LLC-PK1 cells overexpressing murine Bcrp (T€ollner et al., 2015). In
high concentrations, bumetanide was shown to inhibit BCRP
(Hasegawa et al., 2007). Furthermore, bumetanide was shown to be
transported by MCT6 (SLC16A5; Murakami et al., 2005), which is
expressed in the brain as an uptake carrier (Morris and Felmlee,
2008), and can be inhibited by probenecid (Murakami et al.,
2005). Thus, as illustrated in Fig. 6, the ABC transporters Bcrp and
Mrp4 as well as the SLC transporters Oat3 and Oatp1a4 and Mct6
may be involved in active transport of bumetanide at the rodent
BBB. All of them are expressed at the mouse BBB (Kamiie et al.,
2008) and can be inhibited by probenecid (see above) at the high
brain concentrations achieved in this study by i.c.v. administration.

As shown here, i.c.v. injection of probenecid in mice markedly
(~3 fold) increased the brain:plasma ratio of bumetanide, clearly
indicating active efflux of bumetanide at the BBB by probenecid-
sensitive efflux transporters. Probenecid brain levels of at least
~300 mM were needed for inhibiting bumetanide efflux at the BBB,
which is more than an order of magnitude higher than the brain
levels of probenecid achievedwith systemic administration, further
substantiating that the previously reported increase of bumetanide
brain levels by systemic administration of probenecid (Donovan

et al., 2015; T€ollner et al., 2015) was not due to inhibition of BBB
efflux. Since PAH is more selective for inhibiting OATs than pro-
benecid (Sugiyama et al., 2001; Kusuhara and Sugiyama, 2005), it
can be used to further specify active transport of drugs at the BBB
(Sun et al., 2003). For instance, while probenecid inhibits both Oats
and Oatps in transfected LLC-PK1 cells, PAH only inhibits Oats
(Sugiyama et al., 2001). For Oat3, PAH was about 15-times less
potent inhibitor than probenecid (Sugiyama et al., 2001), which is
also shown by the data from different studies summarized in
Table 1. Our in vitro experiments with mouse Oat3 in transfected
CHO cells showed that PAH is ~10-times less potent than proben-
ecid to inhibit transport of bumetanide by this SLC transporter.
However, like probenecid, PAH is also a substrate and inhibitor of
several MRPs, including Mrp4 (Leier et al., 2000; Van Aubel et al.,
2000; Smeets et al., 2004), which, similar to SLC transporters, can
transport a large range of organic anions, including bumetanide,
and are expressed as efflux transporters at the BBB (Borst et al.,
2000; Dallas et al., 2006).

In the present experiments, i.c.v. administration of PAH at doses
of 50 and 100 mg (~0.5 and 1 mM/g brain) in mice did not exert any
significant effect on bumetanide brain concentrations. However,
further increasing the dose to 250 and 500 mg (~2.5 and 5 mM/g
brain) resulted in significant increases in bumetanide brain:plasma
ratio, although these increases were far below those observed with
probenecid. The effective i.c.v. doses of PAH were in the range that
has been reported previously to partially inhibit the brain efflux of
the Oat3 substrate dehydroepiandrosterone sulfate after intrace-
rebral PAH injection in mice (Miyajima et al., 2011). Our findings
thus do not support the previous hypothesis of Donovan et al.
(2015, 2016) that Oat3 is critically involved in bumetanide efflux
at the BBB, but the marked effect of probenecid must involve other
transporters as well.

For further determining which BBB transporters are involved,

Fig. 6. Schematic illustration of potential transport mechanisms involved in bumetanide uptake and efflux at the murine blood-brain barrier (BBB). The localization of transporters
(apical vs. basolateral) is shown as known from the literature (see text). The different thickness of the arrows indicates the relative relevance of each bumetanide transport process,
based on results of this and previous studies (see text for discussion). The finding that both PAH and taurocholate increased the brain:plasma ratio of bumetanide in mice indicates
that both Oat3 and Oatp1a4 (previously termed Oatp2) are involved in bumetanide efflux. However, because Oat3 exhibits only low apical expression in mouse BBB brain capillary
endothelial cells (Kikuchi et al., 2003), its high basolateral expression may be more important for efflux transport of bumetanide than its apical expression, which is indicated by the
question mark. Mrp4, which does transport bumetanide (Uchida et al., 2007), is only expressed at the apical membrane of mouse BBB brain capillary endothelial cells (Leggas et al.,
2004), whereas it may also be expressed at the basolateral membrane in other species (L€oscher and Potschka, 2005b). As discussed in the text, at high concentrations probenecid
inhibits most if not all transporters illustrated in the figure, so that it is not possible to conclude which transporter is involved in the BBB efflux of bumetanide by using probenecid
alone. However, as indicated by the present experiments with elacridar, P-gp and Bcrp seem not to be involved in bumetanide efflux.
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we performed experiments with taurocholate and elacridar. As
shown in Table 1, taurocholate is a potent inhibitor of Oatp1a4,
which is not inhibited by PAH. Following i.c.v. administration,
taurocholate significantly increased the brain:plasma ratio of
bumetanide, although again to a much lower extent than proben-
ecid. Elacridar was without significant effect on brain efflux of
bumetanide, indicating that P-gp or Bcrp are not involved.
Furthermore, methylene blue, which was recently reported to be a
joint substrate for both P-gp and Bcrp (Senarathna et al., 2016), did
not significantly increase the brain:plasma ratio of bumetanide.

Thus, based on these data from i.c.v. administration of 5 trans-
port inhibitors in mice, we suggest that the marked increase of
brain:plasma ratio of bumetanide in response to probenecid is a
result of concerted inhibition of several transporters, including
Oat3, Oatp1a4, and MRP4. Although probenecid may also inhibit
active uptake of bumetanide by Mct6 (Murakami et al., 2005), this
has as yet not been shown for the brain, and seems not to coun-
teract the increase of the bumetanide brain:plasma ratio by pro-
benecid. P-gp and Bcrp do not seem to play any role in bumetanide
efflux at the BBB.

In addition to transporter-mediated active efflux at the BBB, the
high ionization rate and plasma protein binding of bumetanide
would further restrict its brain concentrations, so that brain levels
sufficient to inhibit neuronal NKCC1 are not reached unless very
high, potentially toxic doses of the drug are administered (L€oscher
et al., 2013; Puskarjov et al., 2014). In case of passive diffusion, only
the free (unbound to proteins) unionized concentration is available
to enter the CNS through the BBB. However, even if a drug is highly
protein bound (90% or higher) the free:bound equilibrium is
continuously and rapidly re-established, so that high plasma
binding alone does not restrict penetration of a drug into the brain
along a concentration gradient. For instance, phenytoin and most
benzodiazepines are highly bound to plasma proteins (>90%), but
both total and free concentrations in the brain equal those in the
blood within <1 h after administration (depending on drug lip-
ophilicity), because these drugs freely penetrate through the BBB
by passive diffusion to reach concentration equilibrium (Rambeck
et al., 2006; Marchi et al., 2009; L€oscher et al., 2011). With
respect to the low brain concentrations of bumetanide determined
in the present and previous reports, it should be considered that
functionally relevant brain levels of this drug could even be lower
because (1) the present analysis of bumetanide in the brain did not
consider the blood volume in the brain (although our preliminary
experiments did not indicate that this is a major bias; seeMethods),
and (2) a fraction of bumetanide may not reach its neuronal target
(NKCC1) but is for instance adsorbed to tissue proteins or epithelial
walls/cells in the BBB and brain parenchyma, and metabolized
there. In this respect, an ex vivo assay based on NKCC1 inhibition in
brain parenchyma would provide a more direct measure of
bumetanide access to brain tissue and would dispel concerns that
even the low concentrations reported might still have effects.
However, we are not aware of such an assay. A further interesting
aspect when estimating functionally relevant non-protein bound
bumetanide levels in the brain are cerebrospinal fluid (CSF) con-
centrations, which are often used as a surrogate measure of CNS
availability of drugs (Shen et al., 2004). The CSF:serum ratio of
bumetanide has been determined in dogs after i.v. administration
of 50mg/kg, resulting in values of 0.001e0.004, indicating that only
0.1e0.4% of the serum concentration is present in the CSF (Javaheri
et al., 1993). Similar low brain:plasma ratios of bumetanide as
found in the present and previous studies in adult animals have
been also reported for neonates (Cleary et al., 2013), and, impor-
tantly, BBB disruption by seizures do not increase brain bumetanide
levels in rodents (T€ollner et al., 2014), indicating that active efflux of
bumetanide at the BBB is still functional and keeps bumetanide

brain levels low.
In conclusion, as shown in Fig. 6, the uptake and efflux of

bumetanide at the BBB is much more complex than previously
thought. It seems that both restricted passive diffusion and active
efflux transport explain the extremely low brain concentrations
that are achieved after systemic administration of bumetanide,
limiting the use of this drug for targeting abnormal expression of
neuronal NKCC1 in brain diseases such as epilepsy. We have
recently shown that this limitation can be overcome by adminis-
tering lipophilic prodrugs of bumetanide, such as BUM5, which
rapidly penetrate the BBB and are metabolized to bumetanide in
the brain (T€ollner et al., 2014). Interestingly, BUM5 is less diuretic
than bumetanide (T€ollner et al., 2014), which can be explained by
the present in vitro finding that BUM5 inhibits Oat3-mediated
transport of bumetanide in kidney cells, thus reducing the renal
concentration of bumetanide that can stimulate diuresis via inhi-
bition of NKCC2. The bumetanide derivative BUM13, which lacks
the carboxylic group of bumetanide, did also inhibit Oat3, although
it does not seem to inhibit NKCC2, the kidney target for the diuretic
effect of bumetanide, and is much less diuretic than bumetanide
(Lykke et al., 2015). Donovan et al. (2016) recently proposed that co-
administration of an Oat3 inhibitor and bumetanide is a putative
augmentation strategy for CNS delivery of bumetanide. However,
this strategy is not feasible because, as shown by the present data,
inhibition of Oat3 alone only moderately increases brain bumeta-
nide levels, and this effect occurs only at high proconvulsant doses
of an Oat3 inhibitor. Probenecid, which inhibits several transporters
involved in bumetanide efflux at the BBB, may be more promising,
because it increases brain levels of bumetanide after systemic
administration (Donovan et al., 2015; T€ollner et al., 2015). However,
this increase in brain bumetanide levels is a consequence of inhi-
bition of peripheral bumetanide transport, resulting in highly
elevated bumetanide plasma levels (T€ollner et al., 2015). It is thus
questionable whether probenecid is a clinically useful strategy for
increasing brain bumetanide levels.
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