121 research outputs found

    Isotope Effects in the Predissociation of Excited States of N2+ Produced by Photoionization of 14N2 and 15N2 at Energies Between 24.2 and 25.6 eV

    Get PDF
    Photoelectron/photoion imaging spectrometry employing dispersed VUV radiation from the SOLEIL synchrotron has been used to study the predissociation of N2+ states located up to 1.3 eV above the ion's first dissociation limit. Branching ratios for unimolecular decay into either N2+ or N+ were obtained by measuring coincidences between threshold electrons and mass-selected product ions, using a supersonic beam of either 14N2 or 15N2 as photoionization target. The results confirm that predissociation of the C2Σu+ state of 14N2+ is faster than emission to the electronic ground-state by a factor 10 or more for all vibrational levels v′ ≥ 3, while for 15N2+ the two decay modes have comparable probabilities for the levels v′ = 3, 4, and 5. In contrast, no significant isotope effect could be observed for the other states of N2+ identified in the photoelectron spectrum. For both 14N2+ and 15N2+ isotopologues all vibrational levels of these other states decay to an extent of at least 95% by predissociation

    Does dietary calcium interact with dietary fiber against colorectal cancer? : a case-control study in Central Europe

    Get PDF
    BACKGROUND: An unfavorable trend of increasing rates of colorectal cancer has been observed across modern societies. In general, dietary factors are understood to be responsible for up to 70% of the disease’s incidence, though there are still many inconsistencies regarding the impact of specific dietary items. Among the dietary minerals, calcium intake may play a crucial role in the prevention. The purpose of this study was to assess the effect of intake of higher levels of dietary calcium on the risk of developing of colorectal cancer, and to evaluate dose dependent effect and to investigate possible effect modification. METHODS: A hospital based case–control study of 1556 patients (703 histologically confirmed colon and rectal incident cases and 853 hospital-based controls) was performed between 2000–2012 in Krakow, Poland. The 148-item semi-quantitative Food Frequency Questionnaire to assess dietary habits and level of nutrients intake was used. Data regarding possible covariates was also collected. RESULTS: After adjustment for age, gender, education, consumption of fruits, raw and cooked vegetables, fish, and alcohol, as well as for intake of fiber, vitamin C, dietary iron, lifetime recreational physical activity, BMI, smoking status, and taking mineral supplements, an increase in the consumption of calcium was associated with the decrease of colon cancer risk (OR = 0.93, 95% CI: 0.89-0.98 for every 100 mg Ca/day increase). Subjects consumed >1000 mg/day showed 46% decrease of colon cancer risk (OR = 0.54, 95% CI: 0.35-0.83). The effect of dietary calcium was modified by dietary fiber (p for interaction =0.015). Finally, consistent decrease of colon cancer risk was observed across increasing levels of dietary calcium and fiber intake. These relationships were not proved for rectal cancer. CONCLUSIONS: The study confirmed the effect of high doses of dietary calcium against the risk of colon cancer development. This relationship was observed across different levels of dietary fiber, and the beneficial effect of dietary calcium depended on the level of dietary fiber suggesting modification effect of calcium and fiber. Further efforts are needed to confirm this association, and also across higher levels of dietary fiber intake

    Genome sequence of the necrotrophic plant pathogen Pythium ultimum reveals original pathogenicity mechanisms and effector repertoire

    Get PDF
    Background: Pythium ultimum (P. ultimum) is a ubiquitous oomycete plant pathogen responsible for a variety of diseases on a broad range of crop and ornamental species. Results: The P. ultimum genome (42.8 Mb) encodes 15,290 genes and has extensive sequence similarity and synteny with related Phytophthora species, including the potato blight pathogen Phytophthora infestans. Whole transcriptome sequencing revealed expression of 86% of genes, with detectable differential expression of suites of genes under abiotic stress and in the presence of a host. The predicted proteome includes a large repertoire of proteins involved in plant pathogen interactions although surprisingly, the P. ultimum genome does not encode any classical RXLR effectors and relatively few Crinkler genes in comparison to related phytopathogenic oomycetes. A lower number of enzymes involved in carbohydrate metabolism were present compared to Phytophthora species, with the notable absence of cutinases, suggesting a significant difference in virulence mechanisms between P. ultimum and more host specific oomycete species. Although we observed a high degree of orthology with Phytophthora genomes, there were novel features of the P. ultimum proteome including an expansion of genes involved in proteolysis and genes unique to Pythium. We identified a small gene family of cadherins, proteins involved in cell adhesion, the first report in a genome outside the metazoans. Conclusions: Access to the P. ultimum genome has revealed not only core pathogenic mechanisms within the oomycetes but also lineage specific genes associated with the alternative virulence and lifestyles found within the pythiaceous lineages compared to the Peronosporaceae

    Human Antigen-Specific Regulatory T Cells Generated by T Cell Receptor Gene Transfer

    Get PDF
    Therapies directed at augmenting regulatory T cell (Treg) activities in vivo as a systemic treatment for autoimmune disorders and transplantation may be associated with significant off-target effects, including a generalized immunosuppression that may compromise beneficial immune responses to infections and cancer cells. Adoptive cellular therapies using purified expanded Tregs represents an attractive alternative to systemic treatments, with results from animal studies noting increased therapeutic potency of antigen-specific Tregs over polyclonal populations. However, current methodologies are limited in terms of the capacity to isolate and expand a sufficient quantity of endogenous antigen-specific Tregs for therapeutic intervention. Moreover, FOXP3+ Tregs fall largely within the CD4+ T cell subset and are thus routinely MHC class II-specific, whereas class I-specific Tregs may function optimally in vivo by facilitating direct tissue recognition.To overcome these limitations, we have developed a novel means for generating large numbers of antigen-specific Tregs involving lentiviral T cell receptor (TCR) gene transfer into in vitro expanded polyclonal natural Treg populations. Tregs redirected with a high-avidity class I-specific TCR were capable of recognizing the melanoma antigen tyrosinase in the context of HLA-A*0201 and could be further enriched during the expansion process by antigen-specific reactivation with peptide loaded artificial antigen presenting cells. These in vitro expanded Tregs continued to express FOXP3 and functional TCRs, and maintained the capacity to suppress conventional T cell responses directed against tyrosinase, as well as bystander T cell responses. Using this methodology in a model tumor system, murine Tregs designed to express the tyrosinase TCR effectively blocked antigen-specific effector T cell (Teff) activity as determined by tumor cell growth and luciferase reporter-based imaging.These results support the feasibility of class I-restricted TCR transfer as a promising strategy to redirect the functional properties of Tregs and provide for a more efficacious adoptive cell therapy

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Latest design trends in modal accelerometers for aircraft ground vibration testing

    No full text
    Accelerometers are widely encountered in structural analysis applications such as modal analysis with vibrational or impact input excitation and operational modal analysis. This paper aims to outline design trends and requirements for acceleration sensors in order to insure optimal structural analysis measurement results. Key parameters for a performing modal sensor are: sensitivity, mass, noise level, amplitude and phase frequency response, as well as thermal transient response, thermal sensitivity response, transverse sensitivity (cross axis), base strain and survivability which will be taken into detailed consideration in this paper. Nowadays three IEPE (Integrated Electronic Piezo Electric) sensor designs can be considered: piezo-ceramic shear, piezobending beam and piezo-crystal shear mode sensing elements. Unfortunately, none of the sensor technologies available on the market today will allow for the best of all parameters mentioned earlier. Advantages and disadvantages have to be considered in order to make the optimal choice. Even though Variable Capacitive (VC) MEMS sensors can be used in cases of operational modal analysis at ultra-low frequencies, such as Bridge Structural Testing or Monitoring, only IEPE technology will be in this study. Besides the technical properties of an accelerometer, the handling qualities during installation and removal are extremely important for high channel count systems. Installation time, error rate and reliability for more than 10 years during several tests a year are of special interest for the user. Among the considerations made here, easy monitoring and sensitive axis alignment compared to the overall coordinate system will be examined. The German Aerospace Center (DLR) will illustrate the applicability of accelerometers in context of industrial testing such as Ground Vibration Testing (GVT) of aircraft structures or structural and modal testing of wind turbine blades where innovative methods such as allowing one free adjustable degree of freedom around one rotational axis in order to freely orient the sensitive axis
    corecore