20 research outputs found

    The Global Polarity of Alcoholic Solvents and Water – Importance of the Collectively Acting Factors Density, Refractive Index and Hydrogen Bonding Forces

    Get PDF
    The DHBD quantity represents the hydroxyl group density of alcoholic solvents or water. DHBD is purely physically defined by the product of molar concentration of the solvent (N) and the factor Σn=n×f which reflects the number n and position (f-factor) of the alcoholic OH groups per molecule. Whether the hydroxyl group is either primary, secondary or tertiary is taken into account by f. Σn is clearly linearly correlated with the physical density or the refractive index of the alcohol derivative. Relationships of solvent-dependent UV/Vis absorption energies as ET(30) values, 129Xe NMR shifts and kinetic data of 2-chloro-2-methylpropane solvolysis with DHBD are demonstrated. It can be shown that the ET(30) solvent parameter reflects the global polarity of the hydrogen bond network rather than specific H-bond acidity. Significant correlations of the log k1 rate constants of the solvolysis reaction of 2-chloro-2-methylpropane with DHBD show the physical reasoning of the approach

    Present and Future of Surface-Enhanced Raman Scattering.

    Get PDF
    The discovery of the enhancement of Raman scattering by molecules adsorbed on nanostructured metal surfaces is a landmark in the history of spectroscopic and analytical techniques. Significant experimental and theoretical effort has been directed toward understanding the surface-enhanced Raman scattering (SERS) effect and demonstrating its potential in various types of ultrasensitive sensing applications in a wide variety of fields. In the 45 years since its discovery, SERS has blossomed into a rich area of research and technology, but additional efforts are still needed before it can be routinely used analytically and in commercial products. In this Review, prominent authors from around the world joined together to summarize the state of the art in understanding and using SERS and to predict what can be expected in the near future in terms of research, applications, and technological development. This Review is dedicated to SERS pioneer and our coauthor, the late Prof. Richard Van Duyne, whom we lost during the preparation of this article

    Periodic array-based substrates for surface-enhanced infrared spectroscopy

    No full text
    At the beginning of the 1980s, the first reports of surface-enhanced infrared spectroscopy (SEIRS) surfaced. Probably due to signal-enhancement factors of only 101 to 103, which are modest compared to those of surface-enhanced Raman spectroscopy (SERS), SEIRS did not reach the same significance up to date. However, taking the compared to Raman scattering much larger cross-sections of infrared absorptions and the enhancement factors together, SEIRS reaches about the same sensitivity for molecular species on a surface in terms of the cross-sections as SERS and, due to the complementary nature of both techniques, can valuably augment information gained by SERS. For the first 20 years since its discovery, SEIRS relied completely on metal island films, fabricated by either vapor or electrochemical deposition. The resulting films showed a strong variance concerning their structure, which was essentially random. Therefore, the increase in the corresponding signal-enhancement factors of these structures stagnated in the last years. In the very same years, however, the development of periodic array-based substrates helped SEIRS to gather momentum. This development was supported by technological progress concerning electromagnetic field solvers, which help to understand plasmonic properties and allow targeted design. In addition, the strong progress concerning modern fabrication methods allowed to implement these designs into practice. The aim of this contribution is to critically review the development of these engineered surfaces for SEIRS, to compare the different approaches with regard to their performance where possible, and report further gain of knowledge around and in relation to these structures
    corecore