87 research outputs found

    Use of Malaria Rapid Diagnostic Test to Identify Plasmodium knowlesi Infection

    Get PDF
    Reports of human infection with Plasmodium knowlesi, a monkey malaria, suggest that it and other nonhuman malaria species may be an emerging health problem. We report the use of a rapid test to supplement microscopic analysis in distinguishing the 5 malaria species that infect humans

    Lifetime determination of excited states in Cd-106

    Get PDF
    Two separate experiments using the Differential Decay Curve Method have been performed to extract mean lifetimes of excited states in 106 Cd. The inedium-spin states of interest were populated by the Mo-98(C-12, 4n) Cd-106 reaction performed at the Wright Nuclear Structure Lab., Yale University. From this experiment, two isomeric state mean lifetimes have been deduced. The low-lying states were populated by the Mo-96(C-13, 3n)Cd-106 reaction performed at the Institut fur Kernphysik, Universitat zu Koln. The mean lifetime of the I-pi = 2(1)(+) state was deduced, tentatively, as 16.4(9) ps. This value differs from the previously accepted literature value from Coulomb excitation of 10.43(9) ps

    Genetic attributes of cerebrospinal fluid-derived HIV-1 env

    Get PDF
    HIV-1 often invades the CNS during primary infection, eventually resulting in neurological disorders in up to 50% of untreated patients. The CNS is a distinct viral reservoir, differing from peripheral tissues in immunological surveillance, target cell characteristics and antiretroviral penetration. Neurotropic HIV-1 likely develops distinct genotypic characteristics in response to this unique selective environment. We sought to catalogue the genetic features of CNS-derived HIV-1 by analysing 456 clonal RNA sequences of the C2-V3 env subregion generated from CSF and plasma of 18 chronically infected individuals. Neuropsychological performance of all subjects was evaluated and summarized as a global deficit score. A battery of phylogenetic, statistical and machine learning tools was applied to these data to identify genetic features associated with HIV-1 neurotropism and neurovirulence. Eleven of 18 individuals exhibited significant viral compartmentalization between blood and CSF (P < 0.01, Slatkin-Maddison test). A CSF-specific genetic signature was identified, comprising positions 9, 13 and 19 of the V3 loop. The residue at position 5 of the V3 loop was highly correlated with neurocognitive deficit (P < 0.0025, Fisher's exact test). Antibody-mediated HIV-1 neutralizing activity was significantly reduced in CSF with respect to autologous blood plasma (P < 0.042, Student's t-test). Accordingly, CSF-derived sequences exhibited constrained diversity and contained fewer glycosylated and positively selected sites. Our results suggest that there are several genetic features that distinguish CSF- and plasma-derived HIV-1 populations, probably reflecting altered cellular entry requirements and decreased immune pressure in the CNS. Furthermore, neurological impairment may be influenced by mutations within the viral V3 loop sequenc

    Isomeric Decay of \u3csup\u3e208\u3c/sup\u3eRa

    Get PDF
    Low-energy excited states of 208Ra were investigated using the 182W(30Si, 4n) reaction at the Wright Nuclear Structure Laboratory of Yale University. Fusion evaporation recoils were selected using the gas-filled spectrometer SASSYER. Delayed Ξ³ rays, following isomeric decays, were detected at the focal plane of SASSYER with a small array of three clover Ge detectors. Transitions following a proposed J Ο€ = 8+ isomer were observed, and the half-life was measured

    Isomers and Seniority in the Trans-Pb Nuclei

    Get PDF
    Low-energy excited states of 210Ra and 208Ra were investigated at the Wright Nuclear Structure Laboratory of Yale University. Fusion evaporation recoils were selected using the gas-filled spectrometer, SASSYER. Delayed Ξ³ -rays, following isomeric decays, were detected at the focal plane of SASSYER with a small array of HPGe detectors. Transitions following the proposed J Ο€ = 8+ isomers were observed, and the half-lives measured. The experiments are discussed and results compared to expectations from the seniority scheme

    The role of recombination in the emergence of a complex and dynamic HIV epidemic

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inter-subtype recombinants dominate the HIV epidemics in three geographical regions. To better understand the role of HIV recombinants in shaping the current HIV epidemic, we here present the results of a large-scale subtyping analysis of 9435 HIV-1 sequences that involve subtypes A, B, C, G, F and the epidemiologically important recombinants derived from three continents.</p> <p>Results</p> <p>The circulating recombinant form CRF02_AG, common in West Central Africa, appears to result from recombination events that occurred early in the divergence between subtypes A and G, followed by additional recent recombination events that contribute to the breakpoint pattern defining the current recombinant lineage. This finding also corrects a recent claim that G is a recombinant and a descendant of CRF02, which was suggested to be a pure subtype. The BC and BF recombinants in China and South America, respectively, are derived from recent recombination between contemporary parental lineages. Shared breakpoints in South America BF recombinants indicate that the HIV-1 epidemics in Argentina and Brazil are not independent. Therefore, the contemporary HIV-1 epidemic has recombinant lineages of both ancient and more recent origins.</p> <p>Conclusions</p> <p>Taken together, we show that these recombinant lineages, which are highly prevalent in the current HIV epidemic, are a mixture of ancient and recent recombination. The HIV pandemic is moving towards having increasing complexity and higher prevalence of recombinant forms, sometimes existing as "families" of related forms. We find that the classification of some CRF designations need to be revised as a consequence of (1) an estimated > 5% error in the original subtype assignments deposited in the Los Alamos sequence database; (2) an increasing number of CRFs are defined while they do not readily fit into groupings for molecular epidemiology and vaccine design; and (3) a dynamic HIV epidemic context.</p

    From In Vivo to In Vitro: Dynamic Analysis of Plasmodium falciparum var Gene Expression Patterns of Patient Isolates during Adaptation to Culture

    Get PDF
    Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), encoded by the var gene family, plays a crucial role in disease virulence through its involvement in binding to various host cellular receptors during infection. Growing evidence suggests that differential expression of the various var subgroups may be involved in parasite virulence. To further explore this issue, we have collected isolates from symptomatic patients in south China-Myanmar border, and characterized their sequence diversity and transcription profiles over time of var gene family, and cytoadherence properties from the time of their initial collection and extending through a two month period of adaptation to culture. Initially, we established a highly diverse, DBLΞ± (4 cysteines) subtype-enriched, but unique local repertoire of var-DBL1Ξ± sequences by cDNA cloning and sequencing. Next we observed a rapid transcriptional decline of upsA- and upsB-subtype var genes at ring stage through qRT-PCR assays, and a switching event from initial ICAM-I binding to the CD36-binding activity during the first week of adaptive cultivation in vitro. Moreover, predominant transcription of upsA var genes was observed to be correlated with those isolates that showed a higher parasitemia at the time of collection and the ICAM-1-binding phenotype in culture. Taken together, these data indicate that the initial stage of adaptive process in vitro significantly influences the transcription of virulence-related var subtypes and expression of PfEMP1 variants. Further, the specific upregulation of the upsA var genes is likely linked to the rapid propagation of the parasite during natural infection due to the A-type PfEMP1 variant-mediated growth advantages

    Pathogenic Roles of CD14, Galectin-3, and OX40 during Experimental Cerebral Malaria in Mice

    Get PDF
    An in-depth knowledge of the host molecules and biological pathways that contribute towards the pathogenesis of cerebral malaria would help guide the development of novel prognostics and therapeutics. Genome-wide transcriptional profiling of the brain tissue during experimental cerebral malaria (ECM ) caused by Plasmodium berghei ANKA parasites in mice, a well established surrogate of human cerebral malaria, has been useful in predicting the functional classes of genes involved and pathways altered during the course of disease. To further understand the contribution of individual genes to the pathogenesis of ECM, we examined the biological relevance of three molecules – CD14, galectin-3, and OX40 that were previously shown to be overexpressed during ECM. We find that CD14 plays a predominant role in the induction of ECM and regulation of parasite density; deletion of the CD14 gene not only prevented the onset of disease in a majority of susceptible mice (only 21% of CD14-deficient compared to 80% of wildtype mice developed ECM, p<0.0004) but also had an ameliorating effect on parasitemia (a 2 fold reduction during the cerebral phase). Furthermore, deletion of the galectin-3 gene in susceptible C57BL/6 mice resulted in partial protection from ECM (47% of galectin-3-deficient versus 93% of wildtype mice developed ECM, p<0.0073). Subsequent adherence assays suggest that galectin-3 induced pathogenesis of ECM is not mediated by the recognition and binding of galectin-3 to P. berghei ANKA parasites. A previous study of ECM has demonstrated that brain infiltrating T cells are strongly activated and are CD44+CD62Lβˆ’ differentiated memory T cells [1]. We find that OX40, a marker of both T cell activation and memory, is selectively upregulated in the brain during ECM and its distribution among CD4+ and CD8+ T cells accumulated in the brain vasculature is approximately equal
    • …
    corecore