38 research outputs found

    On Heels and Toes: How Ants Climb with Adhesive Pads and Tarsal Friction Hair Arrays.

    Get PDF
    Ants are able to climb effortlessly on vertical and inverted smooth surfaces. When climbing, their feet touch the substrate not only with their pretarsal adhesive pads but also with dense arrays of fine hairs on the ventral side of the 3rd and 4th tarsal segments. To understand what role these different attachment structures play during locomotion, we analysed leg kinematics and recorded single-leg ground reaction forces in Weaver ants (Oecophylla smaragdina) climbing vertically on a smooth glass substrate. We found that the ants engaged different attachment structures depending on whether their feet were above or below their Centre of Mass (CoM). Legs above the CoM pulled and engaged the arolia ('toes'), whereas legs below the CoM pushed with the 3rd and 4th tarsomeres ('heels') in surface contact. Legs above the CoM carried a significantly larger proportion of the body weight than legs below the CoM. Force measurements on individual ant tarsi showed that friction increased with normal load as a result of the bending and increasing side contact of the tarsal hairs. On a rough sandpaper substrate, the tarsal hairs generated higher friction forces in the pushing than in the pulling direction, whereas the reverse effect was found on the smooth substrate. When the tarsal hairs were pushed, buckling was observed for forces exceeding the shear forces found in climbing ants. Adhesion forces were small but not negligible, and higher on the smooth substrate. Our results indicate that the dense tarsal hair arrays produce friction forces when pressed against the substrate, and help the ants to push outwards during horizontal and vertical walking.This is the final version of the article. It was first available from PLOS via http://dx.doi.org/10.1371/journal.pone.014126

    When the going gets rough – studying the effect of surface roughness on the adhesive abilities of tree frogs

    Get PDF
    Tree frogs need to adhere to surfaces of various roughnesses in their natural habitats; these include bark, leaves and rocks. Rough surfaces can alter the effectiveness of their toe pads, due to factors such as a change of real contact area and abrasion of the pad epithelium. Here, we tested the effect of surface roughness on the attachment abilities of the tree frog Litoria caerulea. This was done by testing shear and adhesive forces on artificial surfaces with controlled roughness, both on single toe pads and whole animal scales. It was shown that frogs can stick 2–3 times better on small scale roughnesses (3–6 ”m asperities), producing higher adhesive and frictional forces, but relatively poorly on the larger scale roughnesses tested (58.5–562.5 ”m asperities). Our experiments suggested that, on such surfaces, the pads secrete insufficient fluid to fill the space under the pad, leaving air pockets that would significantly reduce the Laplace pressure component of capillarity. Therefore, we measured how well the adhesive toe pad would conform to spherical asperities of known sizes using interference reflection microscopy. Based on experiments where the conformation of the pad to individual asperities was examined microscopically, our calculations indicate that the pad epithelium has a low elastic modulus, making it highly deformable

    The use of clamping grips and friction pads by tree frogs for climbing curved surfaces

    Get PDF
    Most studies on the adhesive mechanisms of climbing animals have addressed attachment against flat surfaces, yet many animals can climb highly curved surfaces, like twigs and small branches. Here we investigated whether tree frogs use a clamping grip by recording the ground reaction forces on a cylindrical object with either a smooth or anti-adhesive, rough surface. Furthermore, we measured the contact area of fore and hindlimbs against differently sized transparent cylinders and the forces of individual pads and subarticular tubercles in restrained animals. Our study revealed that frogs use friction and normal forces of roughly a similar magnitude for holding on to cylindrical objects. When challenged with climbing a non-adhesive surface, the compressive forces between opposite legs nearly doubled, indicating a stronger clamping grip. In contrast to climbing flat surfaces, frogs increased the contact area on all limbs by engaging not just adhesive pads but also subarticular tubercles on curved surfaces. Our force measurements showed that tubercles can withstand larger shear stresses than pads. SEM images of tubercles revealed a similar structure to that of toe pads including the presence of nanopillars, though channels surrounding epithelial cells were less pronounced. The tubercles' smaller size, proximal location on the toes and shallow cells make them probably less prone to buckling and thus ideal for gripping curved surfaces

    The biomechanics of tree frogs climbing curved surfaces: a gripping problem

    Get PDF
    The adhesive mechanisms of climbing animals have become an important research topic because of their biomimetic implications. We examined the climbing abilities of hylid tree frogs on vertical cylinders of differing diameter and surface roughness to investigate the relative roles of adduction forces (gripping) and adhesion. Tree frogs adhere using their toe pads and subarticular tubercles, the adhesive joint being fluid-filled. Our hypothesis was that, on an effectively flat surface (adduction forces on the largest 120 mm diameter cylinder were insufficient to allow climbing), adhesion would effectively be the only means by which tree frogs could climb, but on the two smaller diameter cylinders (44 mm and 13 mm), frogs could additionally utilise adduction forces by gripping the cylinder either with their limbs outstretched or by grasping around the cylinder with their digits, respectively. The frogs' performance would also depend on whether the surfaces were smooth (easy to adhere to) or rough (relatively non-adhesive). Our findings showed that climbing performance was highest on the narrowest smooth cylinder. Frogs climbed faster, frequently using a 'walking trot' gait rather than the 'lateral sequence walk' used on other cylinders. Using an optical technique to visualize substrate contact during climbing on smooth surfaces, we also observed an increasing engagement of the subarticular tubercles on the narrower cylinders. Finally, on the rough substrate, frogs were unable to climb the largest diameter cylinder, but were able to climb the narrowest one slowly. These results support our hypotheses and have relevance for the design of climbing robots

    Sticking under wet conditions: the remarkable attachment abilities of the torrent frog, staurois guttatus

    Get PDF
    Tree frogs climb smooth surfaces utilising capillary forces arising from an air-fluid interface around their toe pads, whereas torrent frogs are able to climb in wet environments near waterfalls where the integrity of the meniscus is at risk. This study compares the adhesive capabilities of a torrent frog to a tree frog, investigating possible adaptations for adhesion under wet conditions. We challenged both frog species to cling to a platform which could be tilted from the horizontal to an upside-down orientation, testing the frogs on different levels of roughness and water flow. On dry, smooth surfaces, both frog species stayed attached to overhanging slopes equally well. In contrast, under both low and high flow rate conditions, the torrent frogs performed significantly better, even adhering under conditions where their toe pads were submerged in water, abolishing the meniscus that underlies capillarity. Using a transparent platform where areas of contact are illuminated, we measured the contact area of frogs during platform rotation under dry conditions. Both frog species not only used the contact area of their pads to adhere, but also large parts of their belly and thigh skin. In the tree frogs, the belly and thighs often detached on steeper slopes, whereas the torrent frogs increased the use of these areas as the slope angle increased. Probing small areas of the different skin parts with a force transducer revealed that forces declined significantly in wet conditions, with only minor differences between the frog species. The superior abilities of the torrent frogs were thus due to the large contact area they used on steep, overhanging surfaces. SEM images revealed slightly elongated cells in the periphery of the toe pads in the torrent frogs, with straightened channels in between them which could facilitate drainage of excess fluid underneath the pad

    Locomotion and Adhesion: Control Mechanisms of Attachment in Ants

    No full text
    NatĂŒrliche Haftsysteme ĂŒbertreffen technische Kleber in mehreren Aspekten: Sie haften auf nahezu allen OberflĂ€chen, sind selbstreinigend und sind in ihrer HaftstĂ€rke dynamisch kontrollierbar. FĂŒr Tiere mit Haftorganen ist deren Kontrolle eine Grundvoraussetzung fĂŒr effiziente Lokomotion. Wie können Tiere gut an OberflĂ€chen haften und gleichzeitig schnell laufen? Wie werden Haftorgane kontrolliert, um auf rauen oder glatten OberflĂ€chen senkrecht oder kopfĂŒber zu haften und wieder loszulassen? Die vorliegende Arbeit untersucht am Beispiel vonWeberameisen (Oecophylla smaragdina), welche Kontrollmechanismen Insekten verwenden, um den Konflikt zwischen Haftung und Fortbewegung zu bewĂ€ltigen. Weberameisen besitzen an ihren FĂŒĂŸen zwischen den Krallen ein entfaltbares Haftorgan (Arolium), welches im Vergleich zu anderen Hymenopteren stark vergrĂ¶ĂŸert ist. Ihre enormen HaftkrĂ€fte (mehr als das 100-fache ihres Körpergewichtes) werden hauptsĂ€chlich eingesetzt, um BlĂ€tter fĂŒr ihren Nestbau in den Baumkronen zusammenzuziehen. Sie sind Meister der Haftung und gute LĂ€ufer zugleich und eigneten sich daher sehr gut als Modellsystem. In der Arbeit wurde dieWechselwirkung von Haftung und Bewegung auf mehreren hierarchischen Ebenen untersucht, vom gesamten Körper ĂŒber die Beine bis zum Haftorgan selbst. Es zeigte sich, dass Kontrollmechanismen auf allen drei Ebenen vorliegen. Im ersten Teil der Arbeit wurde durch Manipulationen an der Krallenziehersehne die komplexe innere Mechanik des PrĂ€tarsus aufgeklĂ€rt. Es zeigte sich, dass die Bewegungen von Tarsus, Krallen und Arolium in einer koordinierten Reihenfolge erfolgten. Durch Amputationen der Krallenspitzen an lebenden Ameisen konnte bestĂ€tigt werden, dass die Entfaltung des Aroliums durch das Verhaken der Krallen auf rauen OberflĂ€chen mechanisch eingeschrĂ€nkt wird. Der Einsatz des Aroliums war auch abhĂ€ngig von der OberflĂ€chenorientierung. Weberameisen setzten ihr Haftorgan beim aufrechten Laufen ĂŒberhaupt nicht ein, beim KopfĂŒberlaufen auf glatten OberflĂ€chen wurde dagegen nur ein Bruchteil der maximal möglichen HaftkontaktflĂ€che entfaltet. Die Versuche zeigten, dass Ameisen die Entfaltung des Aroliums entweder aktiv, d. h. durch Kontraktion des Krallenziehermuskels, oder passiv durch Zugbewegungen des Tarsus graduell variieren. Beide Mechanismen werden von den Ameisen verwendet, um die ansonsten klein gehaltene HaftkontaktflĂ€che bei Bedarf (z. B. bei Zusatzbeladungen) zu vergrĂ¶ĂŸern. Die passive Entfaltung ist von der neuromuskulĂ€ren Kontrolle entkoppelt und unterliegt somit nicht den Zeitverzögerungen von Reflexreaktionen. Durch plötzliche laterale Verschiebung der LaufoberflĂ€che durch einen Stoß konnte eine schlagartige Ausfaltung der Arolien ausgelöst werden, die wesentlich schneller ablief als alle bekannten Reflexreaktionen. Dies kann als Sicherheitsmechanismus interpretiert werden, womit sich die Ameisen bei starken ErschĂŒtterungen der natĂŒrlichen Laufsubstrate (BlĂ€tter) durchWindstĂ¶ĂŸe oder Regentropfen festhalten können. Sowohl Kraftmessungen an der Krallenziehersehne, welche die Kontraktion des Krallenziehermuskels nachahmten als auch Reibungskraftmessungen zur passiven Entfaltung des Aroliums zeigten, dassWeberameisen im Vergleich zu einer bodenlebenden Ameise ihre Haftorgane leichter entfalten konnten. Dies erleichtert es ihnen, ihre Haftorgane ĂŒber lange Zeit im entfalteten Zustand zu halten, wie es beispielsweise beim Nestbau erforderlich ist. Mit Hilfe von dreidimensionalen Kinematikstudien konnte gezeigt werden, dass Weberameisen durch Änderungen des Beinwinkels zur OberflĂ€che das SchĂ€lverhalten der Haftorgane beeinflussen. Ein flacherer Winkel verhinderte das AbschĂ€len der Haftorgane wĂ€hrend der Standphase oder beim Tragen von Zusatzlasten; ein steilerer Tarsus hingegen erleichterte das AbschĂ€len wĂ€hrend der Ablösephase. Dieses Verhalten wurde mit dem Modell eines Klebebandes verglichen. Allerdings verĂ€nderten sich die HaftkrĂ€fte in einem bestimmten Winkelbereich deutlich stĂ€rker, als die SchĂ€ltheorie es vorhersagen wĂŒrde. Die starken Unterschiede in der Haftkraft an dieser Schwelle sind jedoch biologisch sinnvoll und werden wahrscheinlich von den Ameisen verwendet, um schnell zwischen Haften und Lösen zu wechseln. Messungen der BodenreaktionskrĂ€fte zeigten einen weiteren Ablösemechanismus: WĂ€hrend der Ablösephase wird durch distales Schieben des Beines das Haftorgan entlastet und so eine passive RĂŒckfaltung des Aroliums erlaubt. Beide Ablösemechanismen (SchĂ€len und Entlasten) wurden fĂŒr einzelne Beinpaare im unterschiedlichen Ausmaß von den Ameisen verwendet. Eine Umorientierung zur Schwerkraftrichtung, z. B. beim KopfĂŒberlaufen, hatte auch Einfluss auf das Laufmuster und die Beinstellung relativ zum Körperschwerpunkt. Die Ameisen passten beim Kopfx ĂŒberlaufen ihren Gang so an, dass sie mehrere Beine gleichzeitig in Bodenkontakt hielten und langsamere und kĂŒrzere Schritte machten. Entstandene Drehmomente beim Tragen von Zusatzlasten wurden durch gezielte Änderungen der Beinpositionen ausgeglichen. Meine Arbeit zeigt, dass Insekten die OberflĂ€chenhaftung auf verschiedenen hierarchischen Ebenen mit Hilfe verschiedener Anpassungen kontrollieren und dabei elegant neuromuskulĂ€re Steuerungen mit rein passiven Mechanismen vereinigen. Die hier fĂŒr Weberameisen exemplarisch untersuchten Effekte sind von allgemeiner Bedeutung fĂŒr alle Tiere, die sich mit Hilfe von Haftorganen fortbewegen. Ein VerstĂ€ndnis der Mechanismen, mit denen Insekten Haftung dynamisch kontrollieren, könnte wichtige Anregungen fĂŒr die Entwicklung von kletterfĂ€higen Laufrobotern liefern.Natural adhesive pads outperform technical adhesives in many aspects: they can stick to almost every surface, they have self-cleaning capabilities and are highly dynamic and versatile in their adhesive strength. Animals walking with adhesive pads have to vary their adhesion with each step in order to adhere safely yet have to detach their feet quickly and effortlessly. How can these animals control their attachment whilst walking upright or upside down, on different surface roughnesses or when carrying additional loads? Weaver ants (Oecophylla smaragdina) have foldable adhesive pads (arolia) at the tip of their feet, which are relatively large compared to other Hymenoptera. They use their pads to adhere to slippery leaf surfaces when they construct their nests in the tree canopy. Since these ants are both good runners and are capable of generating adhesive forces of more than 100 times their own body weight, they form a good model to study the conflict between locomotion and adhesion. In my thesis I have focused on the control mechanisms of adhesion at several hierarchical levels, from body kinematics to leg posture to the mechanics of the adhesive pad itself. In the first part of my studies, manipulation experiments on the claw flexor tendon revealed the complex inner mechanics of the pretarsus. A pull on the tendon elicited a coordinated sequence of movements where the arolium moved after the flexion of the claws. When ants run on rough surfaces the contraction of the muscle is stopped mechanically by the interlocking of the claws and prevents the unfolding of the arolium. Claw amputation experiments on walking ants confirmed that the mechanical control of the arolium depended on surface roughness. The unfolding of the arolium also varied with the load acting on the ants. When ants walked upright their pads were never engaged. When they walked in an upside down manner they used only a fraction of their possible contact area and increased their pad contact area when they carried additional loads. Ants adapted the pad contact size acitvely by a contraction of the claw flexor muscle and/or passively by a proximal pull on the leg. The passive unfolding mechanism of the pads is decoupled from a neuronal control and therefore can be very fast. In experiments where the substrate were displaced rapidly it caused a sudden unfolding of the arolium. The arboreal Weaver ants may use this as a safety mechanism to cling onto the leaves when heavy raindrops or wind gusts shake the substrate. Despite the large size of the arolium in Weaver ants, both the active and passive unfolding required less force than the measured for the smaller pads of a ground living species. The economical unfolding might help the ants to keep the pads unfolded over longer periods, for instance when they keep prey insects down, carry them or when they hold leaves in place for their nest contruction. Kinematic studies revealed that movements of the legs can influence the attachment and detachment of the pads in normal walking and when they carried loads. Ants prevented peeling of their pads by reducing the angle of the tarsus to the surface. Like peeling off an adhesive tape, the pull-off forces depend on the angle of pulling. However, experiments showed that ants quickly detach from a surface when the angle of their tarsus reaches an upper range of angles. By varying the tarsus angle slightly, ants may switch easily between attachment and detachment. Recording of ground reaction forces revealed another detachment mechanism. Walking ants unloaded their feet by distally pushing the leg in order to allow a passive recoil of the tarsus and the self-elastic arolium. Both mechanisms (peeling and unloading) were used in the three leg pairs to a different extend. Running upside down also changed the walking pattern. Ants kept more feet in simultaneous surface contact and walked more slowly. When ants carried loads upside down they compensated for tipping moments of the body, by varying the footfall positions. In summary,Weaver ants can control their attachment on different hierarchical levels and combine neuronal and passive mechanisms in an elegant way. The results shown here forWeaver ants are exemplary for all animals walking with adhesive pads and may provide insights for equipping climbing robots with artificial pads

    FigureData_EndleinSitti2018

    No full text
    Data for Figures 3-

    Data from: On heels and toes: how ants climb with adhesive pads and tarsal friction hair arrays

    No full text
    Ants are able to climb effortlessly on vertical and inverted smooth surfaces. When climbing, their feet touch the substrate not only with their pretarsal adhesive pads but also with dense arrays of fine hairs on the ventral side of the 3rd and 4th tarsal segments. To understand what role these different attachment structures play during locomotion, we analysed leg kinematics and recorded single-leg ground reaction forces in Weaver ants (Oecophylla smaragdina) climbing vertically on a smooth glass substrate. We found that the ants engaged different attachment structures depending on whether their feet were above or below their Centre of Mass (CoM). Legs above the CoM pulled and engaged the arolia (‘toes’), whereas legs below the CoM pushed with the 3rd and 4th tarsomeres (‘heels’) in surface contact. Legs above the CoM carried a significantly larger proportion of the body weight than legs below the CoM. Force measurements on individual ant tarsi showed that friction increased with normal load as a result of the bending and increasing side contact of the tarsal hairs. On a rough sandpaper substrate, the tarsal hairs generated higher friction forces in the pushing than in the pulling direction, whereas no such effect was found on the smooth substrate. When the tarsal hairs were pushed, buckling was observed for forces exceeding the shear forces found in climbing ants. Adhesion forces were small but not negligible, and similar on both substrates. Our results indicate that the dense tarsal hair arrays produce friction forces when pressed against the substrate, and help the ants to push outwards during horizontal and vertical walking

    EndleinFederle_Data_PONE-D-15-22788

    No full text
    Raw data for all figures presented in the manuscript
    corecore