692 research outputs found

    Safety Considerations in the Ground Environment

    Get PDF
    In the history of humankind, every great space adventure has begun on the ground. While this seems to be stating the obvious, mission and spacecraft designers who have overlooked this fact have paid a high price, either in loss or damage to the spacecraft pre-launch, or in mission failure or reduction. Spacecraft personnel may risk not only their flight hardware, but they may also risk their lives, their co-workers lives and even the general public by not heeding safety on the ground. Their eyes may be on the stars but their feet are on the ground! One additional comment: Although the design requirements are very different for human rated and nonhuman rated flight hardware, while on the ground that flight hardware (and its ground support equipment) doesn't care about what it is flying on. On the ground, additional requirements are often levied to protect the work force and general public. (Authors' Note: The source material for this chapter is primarily taken from the Kennedy Space Center Handbook (KHB) 1700.7/45 SW Handbook S-100 Space Shuttle Payload Ground Safety Handbook and the authors' personal experiences

    Transport Anomalies and Marginal Fermi-Liquid Effects at a Quantum Critical Point

    Get PDF
    The conductivity and the tunneling density of states of disordered itinerant electrons in the vicinity of a ferromagnetic transition at low temperature are discussed. Critical fluctuations lead to nonanalytic frequency and temperature dependences that are distinct from the usual long-time tail effects in a disordered Fermi liquid. The crossover between these two types of behavior is proposed as an experimental check of recent theories of the quantum ferromagnetic critical behavior. In addition, the quasiparticle properties at criticality are shown to be those of a marginal Fermi liquid.Comment: 4pp., REVTeX, no figs, final version as publishe

    Influence of rare regions on magnetic quantum phase transitions

    Get PDF
    The effects of quenched disorder on the critical properties of itinerant quantum magnets are considered. Particular attention is paid to locally ordered rare regions that are formed in the presence of quenched disorder even when the bulk system is still in the nonmagnetic phase. It is shown that these local moments or instantons destroy the previously found critical fixed point in the case of antiferromagnets. In the case of itinerant ferromagnets, the critical behavior is unaffected by the rare regions due to an effective long-range interaction between the order parameter fluctuations.Comment: 4 pp., REVTe

    Spitzer Photometry of WISE-Selected Brown Dwarf and Hyper-Luminous Infrared Galaxy Candidates

    Get PDF
    We present Spitzer 3.6 and 4.5 μ\mum photometry and positions for a sample of 1510 brown dwarf candidates identified by the WISE all-sky survey. Of these, 166 have been spectroscopically classified as objects with spectral types M(1), L(7), T(146), and Y(12); Sixteen other objects are non-(sub)stellar in nature. The remainder are most likely distant L and T dwarfs lacking spectroscopic verification, other Y dwarf candidates still awaiting follow-up, and assorted other objects whose Spitzer photometry reveals them to be background sources. We present a catalog of Spitzer photometry for all astrophysical sources identified in these fields and use this catalog to identify 7 fainter (4.5 μ\mum ∼\sim 17.0 mag) brown dwarf candidates, which are possibly wide-field companions to the original WISE sources. To test this hypothesis, we use a sample of 919 Spitzer observations around WISE-selected high-redshift hyper-luminous infrared galaxy (HyLIRG) candidates. For this control sample we find another 6 brown dwarf candidates, suggesting that the 7 companion candidates are not physically associated. In fact, only one of these 7 Spitzer brown dwarf candidates has a photometric distance estimate consistent with being a companion to the WISE brown dwarf candidate. Other than this there is no evidence for any widely separated (>> 20 AU) ultra-cool binaries. As an adjunct to this paper, we make available a source catalog of ∼\sim 7.33 ×105\times 10^5 objects detected in all of these Spitzer follow-up fields for use by the astronomical community. The complete catalog includes the Spitzer 3.6 and 4.5 μ\mum photometry, along with positionally matched BB and RR photometry from USNO-B; JJ, HH, and KsK_s photometry from 2MASS; and W1W1, W2W2, W3W3, and W4W4 photometry from the WISE all-sky catalog

    Statistical Transfer Matrix Study of the ±J\pm J Multileg Ising Ladders and Tubes

    Full text link
    Finite temperature properties of symmetric ±J\pm J multileg Ising ladders and tubes are investigated using the statistical transfer matrix method. The temperature dependences of the specific heat and entropy are calculated. In the case of tubes, it is found that the ground state entropy shows an even-odd oscillation with respect to the number of legs. The same type of oscillation is also found in the ground state energy. On the contrary, these oscillations do not take place in ladders. From the temperature-dependence of the specific heat, it is found that the lowest excitation energy is 4J for even-leg ladders while it is 2J otherwise, The physical origin of these behaviors is discussed based on the structure of excitations.Comment: 6 pages, 9 figure

    Nonanalytic behavior of the spin susceptibility in clean Fermi systems

    Get PDF
    The wavevector and temperature dependent static spin susceptibility, \chi_s(Q,T), of clean interacting Fermi systems is considered in dimensions 1\leq d \leq 3. We show that at zero temperature \chi_s is a nonanalytic function of |Q|, with the leading nonanalyticity being |Q|^{d-1} for 1<d<3, and Q^2\ln|Q| for d=3. For the homogeneous spin susceptibility we find a nonanalytic temperature dependence T^{d-1} for 1<d<3. We give qualitative mode-mode coupling arguments to that effect, and corroborate these arguments by a perturbative calculation to second order in the electron-electron interaction amplitude. The implications of this, in particular for itinerant ferromagnetism, are discussed. We also point out the relation between our findings and established perturbative results for 1-d systems, as well as for the temperature dependence of \chi_s(Q=0) in d=3.Comment: 12pp., REVTeX, 5 eps figures, final version as publishe

    Spitzer Infrared Spectrograph Observations of M, L, and T Dwarfs

    Full text link
    We present the first mid-infrared spectra of brown dwarfs, together with observations of a low-mass star. Our targets are the M3.5 dwarf GJ 1001A, the L8 dwarf DENIS-P J0255-4700, and the T1/T6 binary system epsilon Indi Ba/Bb. As expected, the mid-infrared spectral morphology of these objects changes rapidly with spectral class due to the changes in atmospheric chemistry resulting from their differing effective temperatures and atmospheric structures. By taking advantage of the unprecedented sensitivity of the Infrared Spectrograph on the Spitzer Space Telescope we have detected the 7.8 micron methane and 10 micron ammonia bands for the first time in brown dwarf spectra.Comment: 4 pages, 2 figure

    The quantum phase transition of itinerant helimagnets

    Get PDF
    We investigate the quantum phase transition of itinerant electrons from a paramagnet to a state which displays long-period helical structures due to a Dzyaloshinskii instability of the ferromagnetic state. In particular, we study how the self-generated effective long-range interaction recently identified in itinerant quantum ferromagnets is cut-off by the helical ordering. We find that for a sufficiently strong Dzyaloshinskii instability the helimagnetic quantum phase transition is of second order with mean-field exponents. In contrast, for a weak Dzyaloshinskii instability the transition is analogous to that in itinerant quantum ferromagnets, i.e. it is of first order, as has been observed in MnSi.Comment: 5 pages RevTe

    Anderson-Mott transition as a quantum glass problem

    Full text link
    We combine a recent mapping of the Anderson-Mott metal-insulator transition on a random-field problem with scaling concepts for random-field magnets to argue that disordered electrons near an Anderson-Mott transition show glass-like behavior. We first discuss attempts to interpret experimental results in terms of a conventional scaling picture, and argue that some of the difficulties encountered point towards a glassy nature of the electrons. We then develop a general scaling theory for a quantum glass, and discuss critical properties of both thermodynamic and transport variables in terms of it. Our most important conclusions are that for a correct interpretation of experiments one must distinguish between self-averaging and non-self averaging observables, and that dynamical or temperature scaling is not of power-law type but rather activated, i.e. given by a generalized Vogel-Fulcher law. Recent mutually contradicting experimental results on Si:P are discussed in the light of this, and new experiments are proposed to test the predictions of our quantum glass scaling theory.Comment: 25pp, REVTeX, 5 ps figs, final version as publishe

    Differences between regular and random order of updates in damage spreading simulations

    Get PDF
    We investigate the spreading of damage in the three-dimensional Ising model by means of large-scale Monte-Carlo simulations. Within the Glauber dynamics we use different rules for the order in which the sites are updated. We find that the stationary damage values and the spreading temperature are different for different update order. In particular, random update order leads to larger damage and a lower spreading temperature than regular order. Consequently, damage spreading in the Ising model is non-universal not only with respect to different update algorithms (e.g. Glauber vs. heat-bath dynamics) as already known, but even with respect to the order of sites.Comment: final version as published, 4 pages REVTeX, 2 eps figures include
    • …
    corecore