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Nonanalytic behavior of the spin susceptibility in clean Fermi systems

D. Belitz
Department of Physics and Materials Science Institute, University of Oregon, Eugene, Oregon 97403

T. R. Kirkpatrick
Institute for Physical Science and Technology and Department of Physics, University of Maryland, College Park, Maryland 20742

Thomas Vojta
Department of Physics and Materials Science Institute, University of Oregon, Eugene, Oregon 97403
and Institut fu Physik, Technische Universit&€hemnitz-Zwickau, D-09107 Chemnitz, Federal Republic of Germany
(Received 12 November 1996

The wave vector and temperature-dependent static spin susceptjpi(i€,T), of clean interacting Fermi
systems is considered in dimensionsd<3. We show that at zero temperatyrgis a nonanalytic function
of |Q|, with the leading nonanalyticity beif@|?~* for 1<d<3, andQ?In|Q| for d= 3. For the homogeneous
spin susceptibility we find a nonanalytic temperature depend@ficé for 1<d<3. We give qualitative
mode-mode coupling arguments to that effect, and corroborate these arguments by a perturbative calculation to
second order in the electron-electron interaction amplitude. The implications of this, in particular for itinerant
ferromagnetism, are discussed. We also point out the relation between our findings and established perturbative
results for one-dimensional systems, as well as for the temperature dependeggQef0) in d=3.
[S0163-18207)04216-1

[. INTRODUCTION however, if we consider quantum fluids. The quantum nature
of a system has two major implications as far as statistical
It is well known that in fluids—that is, in interacting mechanics is concerned. First, temperature enters, apart from
many-body systems—there are long-range correlations beccupation numbers, through Matsubara frequencies, which
tween the particles. For example, in classical fluids in thermeans that the system’s behavior as a function of tempera-
mal equilibrium there are dynamical long-range correlationgure will in general be the same as its behavior as a function
that manifest themselves as long-time tails, or power-lawof frequency, at least at asymptotically low temperatures.
decay of equilibrium time correlation functions at large Second, and more importantly, in quantum statistical me-
times? In frequency space, the analogous effects arehanics statics and dynamics are coupled and need to be
nonanalyticities at zero frequency. In an intuitive physicalconsidered together. This raises the question of whether in a
picture, these correlations can be understood as memory ejuantum fluid there might be long-range spatial correlations
fects: the particles “remember” previous collisions, and even in equilibrium.
therefore so-called ring collision events, where after a colli-  From studies of systems with quenched disorder, there is
sion the two involved particles move away and later recolgyjdence that the answer to this question is affirmative. Let
lide, play a special role for the dynamics of the fluid. Tech-\,5 consider interacting fermions in an environment of static
nically, the long-time tails can be described in terms Ofg qyarers. In dimensiords>2, and for a sufficiently small

mode—modt_a coupling theories_. The salignt point is that Withy o e rer density, the relevant soft modes in such a system
any quantities whose cqrrelatlons constitute soft, or gaples%re diffusive, so frequenc), or temperaturd, scales like
modes(due to conservation laws, or for other reagppsod- the square (’)f the wave véct@ O~T~Q? ’Via mode

f th ntities have the same pr h - . ’ : o
ucts of these quantities have the same propelthe equa mode coupling effects that are analogous to those present in

tions of motion that govern the behavior of time correlation . ) . .
functions this leads to convolutions of soft propagators,CIaSS'Cal fluids, dynamical long-range correlations lead to

which in turn results in nonanalytic frequency dependenced®nd-time tails in equilibrium time correlation functions. For
For phase-space reasons, the strength of the effect increadggtance, the electrical conductivity as a function of fre-
with decreasing dimensionality: while in three-dimensionalduency behaves lik&(“~2" at smallQ in d>2.° The dy-
(3D) classical fluids the long-time tails provide just a correc-namical spin susceptibilityys(Q,(2) shows no analogous
tion to the asymptotic hydrodynamic description of the sysJong-time tail atQ=0 for reasons related to spin conserva-
tem, in 2D fluids they are strong enough to destroytion. However, from the above arguments about the coupling
hydrodynamics:* of statics and dynamics in quantum statistical mechanics and
A natural question to ask is whether such long-range corthe scaling of frequency with wave number, one would ex-
relations also occur in position space. Indeed, in classicgbect thestatic spin susceptibility,xs(Q,Q2=0) at T=0, to
fluids in nonequilibrium steady-state effects occur that mayshow a related nonanalyticity atQ=0, namely,
be considered as the spatial analogs of long-time tails, but igs~|Q|% 2. This is indeed the case, as can be seen most
thermal equilibrium this is not the cadé.This changes, easily from perturbative calculatioAsSchematically, the
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coupling of two diffusive modes leads to contributions to  This somewhat surprising result casts some doubt on the

Xs Of the type general physical picture painted above, which suggests the
qualitative equivalence of disordered and clean systems with
1 1 respect to the presence of long-range correlations, and result-

J dQJ doTF ot O+ (qr 02’ (1.1 ing nonanalyticities in both the statics and the dynamics of

guantum systems. On the other hand, a failure of this general

which leads to the above behavior. One can then invokg@icture would be hard to understand from several points of
renormalization-group arguments to show that this is indeedtiew. For instance, inl=1 the instability of the Fermi liquid
the leading smal@@ behavior ofy.. Similarly, at finite tem-  with respect to the Luttinger liquid is well known to manifest
perature the homogeneous susceptibility behaves adtself in perturbation theory fogs by means of logarithmic
¥s(Q=00=0)~T@-22 This has interesting conse- singularities:***This is precisely what one obtains from the
quences for itinerant magnetism in such systems, as has begpde-mode coupling integral, E¢L.2). By continuity one
recently discusse®® therefore expectsys(Q=0,T)~T9 !, and xs(Q,T=0)

Somewhat surprisingly, the situation is much less clear im-|Q|97%, at least ind=1+ €. Unless the physics changes
clean Fermi systems. Here the soft modes are density arglialitatively betweeml=1+ e andd=3, this should still be
spin density fluctuations, as well as more general particletrue in higher dimensions. Also, the corrections to Landau
hole excitations. All of these have a linear dispersion relatheory we are discussing here can be cast in the language of
tion, i.e., Q~|Q|. The form of the dispersion relation does the renormalization group. In this framework, the Fermi-
not affect the basic physical arguments for nonanalytic frediquid ground state is described as a stable fixed p8iahd
quency and wave-number dependences given above. Otiee effects we are interested in manifest themselves as an
might thus expect the spin susceptibility to have mode-modérelevant operator that leads to corrections to scaling near
coupling contributions of a type analogous to those shown irhis fixed point’ In a system wher®, Q, andT all have a

Eq. (1.1), but with ballistic instead of diffusive modes: scale dimension of unity, this operator should appear as
|Q|971, 09471, etc., dependences in various correlation func-

1 1 tions. From a general scaling point of view it would be hard
f dQJ dww+|q| 0t Q+]q+Q[’ (1.2 to understand if this were not the case, except for the possi-

bility that the prefactors of some nonanalyticities might ac-

which leads toy(Q,Q=0)~const+ |Q|¢~! in generic di- cidentally vanish in certain dimensions.
mensions aff=0. In d=3, one would expect &2n|Q It is the purpose of the present paper to clarify this con-
behavior, as convolution integrals tend to yield logarithms infusing point. We will show that the above general physical
special dimensions. Such a behaviorxafwould have pro- picture does indeed hold true, and that it is not violated by
found consequences for the critical behavior of itinerant ferthe previously found absence of BInT term in ys in
romagnets, as has been pointed out recénitlyjs therefore d=3, which is accidental. The remainder of this paper is
of importance to unambiguously determine whether or noprganized as follows. In Sec. Il we define our model. In Sec.
the above mode-mode coupling arguments do indeed cariyl we perform an explicit perturbative calculation to second
over from disordered to clean systems. order in the electron-electron interaction. This confirms both

Before we start this task, let us discuss the available inour qualitative arguments, and the results of Ref. 13. We
formation concerning long-range correlations in clean Fermgxplain why there is no contradiction between these results,
systems. The specific heat is known to be a nonanalytic funcand we also make contact with established perturbative re-
tion of temperature, viz.C\,/T~T2InT in d=3. This is a sults ind=1. In Sec. IVA we discuss our result in the light
consequence of a nonanalytic correction to the linear dispef mode-mode coupling arguments that are an elaboration of
sion relation of the quasiparticles in Fermi-liquid theory, those given above. In Sec. IVB we make contact with
namely,A e(p) ~ (p— pg) 3In|p—pe|.2° Such a nonanalyticity renormalization-group ideas, and argue that the functional
signal the presence of a long-range effective interaction beforms of the nonanalyticities derived in Sec. Ill by means of
tween the quasiparticles, and in general it will lead toperturbation theory are asymptotically exact. In Sec. IV C we
nonanalytic behavior of both thermodynamic quantities andliscuss the physical consequences of our results.
time correlation functions. Th&2InT term in the specific-
heat coefficient is an example of such an effectd#n2 the Il. MODEL, AND THEORETICAL FRAMEWORK
behavior isCy /T~ T, which is consistent with the behav-
i d—-1 ; in ] ; A. The model
ior Cy/T~T in generic dimensions that one would ex-
pect from the above arguments. It was natural to look for Let us consider a system of clean fermions governed by
similar effects in other quantities, in particular in the spinan actior®
susceptibility. These investigations concentrated on the tem-
perature dependence gf, and several authors indeed re- — d
ported to have found &2InT term in the homogeneous static S=- f dx; ’pa(x)a_T Yo(X)+ S+ Spe.  (2.10
spin susceptibility. However, other investigations did not
find such a contributio®® The resulting confusion has been Here we use a four-vector notationx=(x,7), and
discussed by Carneiro and PethiékThese authors used [fdx=[dxf5dr. x denotes position,r imaginary time,
Fermi-liquid theory to show that, whil&?InT terms do in- B8=1/T, and we choose units such thatkg=1. o is the
deed appear in intermediate stages of the calculatignas  spin label.Sy describes free fermions with chemical potential
well as ofCy,, they cancel in the former. o,
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FIG. 1. Typical small-angle (1), large-angle (2), and

2kg-scattering processé8) near the Fermi surface ith=2.

So= J dx> P (O[AR2M+ wly(x), (2.0

with A the Laplace operator, and the fermion massS;,;
describes a two-particle, spin-independent interaction,

2 v(X1—Xp)

01,02

1
Su=—5 | dxdx,

Xy (X)) (X2 Y (XD iy (X0). (2,10

The interaction potentiad(x) will be specified in Sec. 11B
below.

We now Fourier transform to wave vectdtsand fermi-
onic Matsubara frequencies,=2#T(n+1/2). Later we
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FIG. 2. The three independent scattering processes near the
Fermi surface with interaction amplitudgs, g,, andg, in d=1.

the phase-space decomposition that is inherent to this classi-
fication explicit by writing the interaction part of the action,

=S+ S+ S (239
where
Si=5 3 3 S @i,k
int 2 o o oq
Xy (P+ O (P) o (k+0), (23D

(2) _

_T , - R
5 2 2 2 0(p=K)Yy, (K, (p+a)
k.p

01,02

X, (K+A)ihg, (P), (2.30

-T

2

(3) _

int —

> >

o1#F oy K,p

X Woz(p"'CI)‘//ol(_ p)

3 okt )iy, (K, (—k+a)

(2.30

will also encounter bosonic Matsubara frequencies, which

we denote byQ),=27Tn. Using again a four-vector nota-
tion, k=(k,wn), Z,=TZ,,, [dk/(2m)", we can write

S=> Ek Yo (K[ wp—K22m+ u]y,(k), (2.23

-7
Si=—%~ Ok, +ky kgt kU (K2 = K3)

01,02 {ki}

X g (k) Yo (K2 Uy (Ka) g (Kg).  (2.2D)

Here the prime on thg summation indicates that only mo-
menta up to some cutoff momentufn are integrated over.
This restriction is necessary to avoid double counting, since
each of the three expressions, E(s3b—(2.3d, represents

all of S, if all wave vectors are summed over. The long-
wavelength physics we are interested in will not depend on
A.

The above phase-space decomposition is correct in di-
mensionsd=2. In d=1, the Fermi surfaces collapse onto
two Fermi points, and the processes we called above large-
angle scattering andk2 scattering become indistinguish-

For the |0ng_Wa\/e|ength, |0W_frequency processes we W|||able The three independent_ sca_ttering processes are usu_ally
be interested in, only the scattering of particles and hole§hosen as the ones shown in Fig. 2, and the corresponding
close to the Fermi surface is important. It is customary andoupling interaction potentials are denoted ¢y 9,, and

convenient to divide these processes into three cldSgas:
small-angle scattering(2) large-angle scattering, an(B)

2ke scattering. These classes are also referred to as
particle-hole channel for class€h and(2), and the particle-
particle or Cooper channel for cla$3), respectively. The
corresponding scattering processes are schematically

g4.~> Inspection shows that the action written in E¢R.3
counts each of these processes twicca(j[f is dropped, then
thbe g, process is still counted twice. However, it is known
that g, does not contribute to the logarithmic terms we are
interested int> For our purposes it therefore is sufficient to
dpsst drop the particle-particle channel when we are dealing

picted in Fig. 1. For our purposes it is convenient to makewith d=1.
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B. Simplifications of the model

The effective interaction potentials that appear in Eqs K+io ko, N ko
(2.3b—(2.30 are all given by the basic potential taken at \/ \/
different momentaS!} contains the direct scattering contri- E E
bution, orv(q), with q the restricted momentum. i is h ! rz:
chosen to be a bare Coulomb interaction, then this leads to ! '
singularities in perturbation theory inthat indicate the need /\ /\
for infinite resummations to incorporate screening. For sim- p+4a.0, .0, P+q0, K+q0,

plicity, we assume that this procedure has already been car-
ried out, and takes to be a statically screened Coulomb
interaction. For effects that arise from small valuesgpfit is P, 0, k.o,
then sufficient to replacev(q) by the number
I';=v(q—0).2% In Egs.(2.39 and (2.3d the moduli ofk

andp are equal tkg for the dominant scattering processes, T, I

and one usually expands these coupling constants in Leg- :

endre polynomials on the Fermi surface. While all of the /'\

terms in this expansion contribute to the processes we want L2 Lo

to study, we note that the coefficients in the angular momen- P+940, k+g,0,

tum expansion are independent coupling constants. In order

to establish the existence of a nonanalytic termyi(Q), it FIG. 3. The three interaction vertices with coupling constants

therefore is sufficient to establish its existence in a particulaf,, T',, andT 5.

angular momentum channel. For simplicity we choose the

zero angular momentum channkk 0. We then have three easy to see that no nonanalytic behavior can occur at first
coupling constants in our theory, namely;, I'5, andT';, order in the interaction. At second-order, there is also a large
which arev (k—p) andv (k+p), respectively, averaged over number of diagrams for which this is true, and others vanish
the Fermi surface. Instead &f, andI', one often uses the due to charge neutralif§’. There remain seven topologically
particle-hole spin singlet and spin triplet interaction ampli-different second-order diagrams, all shown in Fig. 4, that
tudesI'g andT; that are linear combinations &f; andT',. need to be considered. We thus write

They are related to the Fermi-liquid parametéjsandF§ by
7

1 Fg _ ) : -
Fe=Ty-Tof2= o 1+('):S, (2.43 xs(Q) 2)(0(Q)+i2l x'"+ (analytic contributions
F 0 (3.1
a
I=T./2= “1 K (2.4b) where x, denotes the Lindhard function, and the correction
t 2% 2Ng 1+F ' terms are labeled according to the diagrams in Fig. 4. Here

where N¢ is the density of states at the Fermi level. Our

simplified model is tantamount to taking orf§f andF§ into cmacs SRR
account instead of the complete sets of Landau parameters.

As explained above, this is sufficient for our purposes. We ( )
also define the Cooper channel amplitude,

o
~

e)] 2 3)
T.=T4/2, (2.49

and again we keep only the=0 channel. The particle-
particle channel is neglected in Landau theory.

Our model is now defined as EgR.2) and (2.3), with
v(q), v(p—k), andv(k+p) replaced byl'y, I'5, and I3,
respectively. We thus have three different interaction verti-
ces, which are shown in Fig. 3. In the following section we
will calculate x in perturbation theory with respect to the
interaction amplitude$', I',, andI;.

T )
O
IIl. PERTURBATION THEORY O 1
6)

&)

)

We now proceed to calculate the spin susceptibjifyin %)
perturbation theory with respect to the electron-electron in-
teraction. This can be done by means of standard FIG. 4. Second order diagrams that contribute to the nonanalytic
methods’#1°We will be interested only in contributions behavior of ;. The solid vertical line denotes the external spin
that lead to a nonanalytic wave-number dependence. It igertexo.

A. Contributions to second order in the interaction
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and in the remainder of this section we use again the foureannot flip the spin, and that the external vertex carries a

vector notation of Sec. Il, s@=(Q,(,), etc. factor of o. The functions in the integrands of Eq8.3) are
These diagrams can be expressed in terms of integratiefined as

over electronic Green’s functions, or bare electron propaga-

tors, that can be read off EqR.23,

IB(@)=2 GBiq, (3.43
. 1
Gk:Gk(lwn)_iwn——km' (32)
(3 -
In terms of theG,, we find J7(0.Q) Ek GiGi-aGr—q- (3.4
M=—ar,r 2> 3%(9,Q)3%(q), (3.3
X 22 0?2, 34%(0,03% (), (3.3 109=F (60%G_Gro. (3.40

2)— _ YA (3) 2
21-‘11—‘2; (o 2 {[‘J (qu)] J(24)(qu):2k Gkaqukakaqu, (34d)

+35%(a,Q)3 ()}, (3.3
(2) =
xO=—2ril3 0?3 3%(a,03%(-a,-Q), A 4
(3.30
1(0,.Q)= 2 G 1BkiqG -0 (3.4f)
XM=(T2)? X 01021 85,0) 2" 157(0,Q)15(,Q),
(3.3d |<23><q,Q)=§ GiG_k+qGksiq-0.  (3.49
XO=(T9)? 2 0105(1=8,,,,) 2" 157(0,.Q)1P(a),
e (3.38 17@.Q=2 (6G0*G 11eGrq. (34N
(6) — 2NV 271(4) 2
X 22 012" [(M)25"(a,Q)+(I'y) 190Q)=3 G8 1qGgC rrao. (34

xJ9(=0,Q) 13 (~q)+2(I'3)? , , , n e
The information we are interested in is contained in Eqgs.

" 18(q.0)1?(q) (3.)—(3.9 in te_rms of integrgls._ T_he remaining task is to
Z 1 (G a: perform these integrals. While it is easy to see by power
counting that all of the above contributions q do indeed
(330 scale likeQ9~ for 1<d<3, and likeO(1) andO(Q?) with
logarithmic corrections id=1 andd= 3, respectively, we
x= E 012 {(1"1)23(‘” (q,Q)3?(q)+(T,)? have found it impossible to analytically perform the integrals
in general, i.e., for a finite external wave number in arbitrary
3)_ 2 (4 dimensionsd. However, for a perturbative confirmation of
XA =X (3.39 the expected nonanalyticity such a general analysis is not
Hereq is a bosonic frequency-momentum integration vari-necessary. Rather, it is sufficient to explicitly obtain the pref-
able. In Egs(3.3), the following multiplication factors have actors of the logarithmic singularities bh=1 andd=3. If
been taken into account. In diagrdf) of Fig. 4, either one they are not zero, then by combining this with power count-
of the interaction lines can be Ia;; the other one is then ing and the expected continuity gf; as a function ofd, it
necessarily d°,. This leads to a multiplication factor of 2, follows that the prefactor of th€Y~! nonanalyticity does
and another factor of 2 comes from the existence of amot vanish for generic values dfeither. For the temperature
equivalent symmetric diagram. In diagrai@), again either dependence a=0 the integrals can be done in arbitrary
one of the two interaction lines can bd'a, with the other d, see Sec. Il E below.
line then being d°,, but here the two expressions one ob- In Secs. IlIB-1lID we therefore analyze the above inte-
tains are not identical. Again, there is an overall symmetrygrals ind=1 andd=3. In doing so, we treat the particle-
factor of 2. The same holds for diagrai®), but without the  hole and particle-particle channel contributions separately,
overall symmetry factor. Diagram@) and (5) can be real- since they have quite different structures. We also anticipate
ized only withI'3, and they carry no multiplication factors. that we will be interested only in the static spin susceptibil-
In diagrams(6) and (7), both interaction lines must be the ity, so Q=(0,Q). In d=1, we write Q for the one-
same, and diagrar(6) carries an extra symmetry factor of dimensional vector, i.e., a real number that can be either
2. The spin structures represent the fact that the interactiopositive or negative.

X 2 01051 80,0,)

0’1,0'2

01,02
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B.d=1 is signaled by the divergence. By expanding E@4b—

Let us first consided=1. We do this mainly to make (3.40 to O(Q?), and dropping the uninteresting _contribution
contact with established results in the literature. As explained® e homogeneougs, we can express all logarithmic con-
above, the particle-particle channel must not be taken intdiPutions toxs in terms of two integrals,
accountind=1, so we puf’3=0. Since we are interested in .0 2
a logarithm that results from an infrared singularity, it suf- Y : 5
ficesgto calculate the integrands in the limit ofgsmallsq‘requen- ‘]1_2 ; (T) (Gkra) G“Ep GpGp-g
cies and wave numbers. Be performing the integrals in Egs. 5
(3.43—(3.40 one obtains, witlQ=(0,Q) andg=({,,q), (N,:v,:) 1

24 q (UF|CI|)3’

(3.78

Ne

I = 1 Torg? (3.59

1 k-O\?
o= 2 (7> (Gk)“Gk,q% (Gp)?Gpq=—J1,
(3.7b

(3.5b where we have kept only the most divergent term. We find

J®(q,Q)=N¢

10,0/Q  10,(Q-a)/Q }
Qo+ (we@?  Q2+[ve(Q—q)1?)

202 / 1_ _ 2
.J(14)(q,Q)=NF[ﬂ (szq) 73— o7 Vo 2 XT= 78000, (3.89
Q [Qn+(UFq) 1 Qn—i_(UFQ) ) )
2102 (Q-)?IQ? } x?=—4rT,Q%(J,+3,)=0, (3.8b
+ - L
Qi+ (ed)®  Qp+[ve(Q—)]? x¥=—8T.T,Q%,, (3.89
(359 (6) 2. 12\A2
202 102 x"'=8(I'1+1'5)Q%Jy, (3.80
29°/Q (q-Q)Q
(4) —N.| —
27(a.Q) NF[ 0%+ (002 | Q2+ [0p(q- Q)12 X"=8Q*(~T33;-T3%J,). (3.80
(q+Q)?%Q? Here we have used the fact that the structur€’)? that
O+ [or(q+ Q1 (3859 appears iny®, x®, and ¥V, if expanded to orde?,

yields two terms, one of which gets canceled by parts of the
Inserting this into Eqs(3.3), performing the final integrals, other. The remaining contribution can be expressed in terms
and collecting the results one obtains, apart from analytief J,.
terms, We see that in the skeleton diagramg?—x(®), self-
energy contributions and vertex corrections cancel each
Xs(Q)=2Ne = 4Ne(T'\Ne)?In(2ke /1Q).  (3.6)  jyper However, in the insertion diagramg® and y("), the
This result agrees with the well-known one to this order insame cancellation is effective only in the spin singlet chan-
I',.** One would expect that the |@| gets replaced by a nel, while in the spin triplet channel the two diagrams add
InQ or InT if one works atQ=0 and finiteQ) or T, respec-  up. Interpreting the logarithmic divergencedipas a IfQ| as
tively. Explicit calculations confirm this. Of course the explained above, we obtain for the particle-hole channel con-
physical content of this perturbative result is limited, sincetribution to xs,
the ground state is not a Fermi liquitiFor later reference
we also mention that, to logarithmic accuracy, it is not nec- ., _
essary to kee nonzero in the above calculation. If one Xs =
works atQ=0 and determines the prefactor of the resulting
logarithmic divergence, then one obtains the same result as
above.

4/ Q \?
2NF+2NF(FtNF)2§(2—kF) In(2ke/1Q)). (3.9

D. Particle-particle channel ind=3

We now turn our attention to the particle-particle channel.
C. Particle-hole channel ind=3 As can be seen from Sec. IIA, diagrar®—(7) in Fig. 4
] ) . contribute. From Eqs(3.3d and (3.3¢g it follows that the
In d=3, both the particle-hole and the particle-particle y,icle-particle channel contributions of diagrads and
channel contribute to the terms we are interested in. Smcg]) cancel each other. so we are left wijﬁ5) and X(e)_
the structures of the integrals in the two channels are qu“%xpanding the functior{éf) andl(24) Eqs.(3.4h and(3.4i)

d|iferent, we f'r.St consider the part|cle2 part|cle. channe. Into orderQ? and doing the integrals, one finds that the leading
d=3, the logarithm appears only &(Q“). KeepingQ ex- S o2 (5) 6)
Coe . logarithmic contributions to botly'>’ and x'*’ can be ex-
plicitly in the integrals to that order would be hard. However, : ; X
ressed in terms of a single integral,

as was pointed out in the preceding subsection, to Iogarithr-)
mic accuracy this is not necessary. Rather, we can just ex- kO 2
pand inQ. The prefactor of the&Q? term will then be loga- =S ( ) ) G.)5G G.G

rithmically divergent, and the prefactor of the divergence 2 2k m | (G 4‘”’% propTa

will be the same as that of tH@?In|Q| term whose presence (3.10
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Inspection of the integrand shows that the leading divertion, in a Fermi liquid the wave number scales like frequency
gency inl is a logarithm squared, in contrast to the particle-or temperature, and one would therefore naively expect a
hole channel, where the leading term is a simple logarithmT2InT contribution to the homogeneoyg, at T>0. This
The reason is that ;G,G_,.4 contains a term~In|g| for  raises the question of whether our results are compatible with
g—0, which is just the usual BCS-type logarithm that isthose of Carneiro and Pethiék,who did not find such a
characteristic of the particle-particle channel. It also dependsontribution. In order to clarify this, let us calculate
on an ultraviolet cutoff, sinc&,G,G_ ;4 does not existin  xs(Q=0,T) explicitly within our formalism. For the reasons
d=3 if the integration is extended to infinity. In conjunction explained in Sec. IlID we restrict ourselves to the particle-
with the other factor in the integrand bf which is an alge- hole channel, as did Ref. 13.

braic function, this gives the leading behavior: To this end, we puQ=0 in Egs.(3.48—(3.4d), and con-
, , sider the temperature dependence ¢P—x®, x(®), and
I~f dqln|q|focdw q°—3(w/ve) (3.11 x'7). The relevant integrals are of the structure,
0 [9*F(wlve)?]® '
2 - .
While this diverges like (InG)by power counting, the pref- f dqq T%ﬂ f(q,1Q,)9(q,1y), (3.13

actor of the divergency turns out to be zero since the fre- _ .
quency integral in Eq(3.11) vanishes. This leads to the fol- Which are most conveniently done by using the spectral rep-
lowing conclusion for the particle-particle channel resentation for the causal functions(q,if2,) and

contribution toys: 9(q,iQ,).2? Simple considerations show that there is no
T2InT term if bothf andg are algebraic functions; only if at
XQ'P:2NF+2NF(FCNF)2{0><[|n(2kF/|Q|)]2 least one of them possesses a branch cut can such a nonana-
lyticity arise. This immediately rules oy'®, and the first
+0[In(2ke/|QN 1} (812 and second contribution tg® and y(), respectively, as

. ) sources for &2InT. The reason is that an explicit calculation
Our method of expanding in powers @, and extracting of 33(q,0=0), Eq. (3.4, in the limit of smallq shows

the prefactor of the ensuing singularity, works only for thethat the only singularities in this function are poles. The
leading nonanalytic contribution. With this method, there- same is true ford®(q,0=0) and J¥(q,Q=0), but
fore, the result that is expressed in £8.12 is all we can 73, AR 2 A '
achieve. In order to determine the prefactor of the next—‘] (Q)‘dWh'Ch IIIS r?mhus ihe L!thard function, has”a bra?l?h
leading IHQ| term, one would have to keep a nonzero exter-?.tzjlth_?n so all of the remaining terms potentially go like
nal wave number explicitly. As pointed out before in the Siﬁce a0ain we are aiming onlv at logarithmic accurac
context of the particle-particle channel, this would be very 9 @) - 9 y(4) 9 - Y,
difficult. However, for our purposes this is not really neces-V€ can replacel;”(q,Q=0) and J;°(q,Q=0) by low-
sary. We know that the interaction amplitudes in the particlejriq“ency' Iong—v(\ge)lvelength expressions  for  which
hole and particle-particle channels, respectively, are indepenz_ (d,Q=0)=—2J7"(q,Q=0). The contributions from
dent. Therefore, the particle-particle channel contributiorx™ and x(*) therefore cancefremember that diagramd)
cannot in general cancel the nonzero contribution from thénd(2) in Fig. 4 carry multiplication factors 4 and 2, respec-
particle-hole channel that we found in Sec. IllC. What wetively]. The contributions fromy(®) and x{") can both be
have established is that the particle-particle channel is ndgtxpressed in terms of an integral

more singular than the particle-hole channel, and for show-

ing that the leading nonanalyticity g is In|Q| with a non- :J' 2 (4) —0 12

zero prefactor this is sufficient. J daa T% J17(a.Q=0)J"a). (319

It should be pointed out that low-order perturbation theory . . s
In doing this integral one may encounter individual terms

probably overestimates the importance of the particle- . 2
particle channel. Usually, singularities in the particle-particleth"’lt 90 like T¥InT, but all _Of tyose terms can_cel, aznd the
leading T dependence of is T<. There hence iso T9InT

channel are logarithmically weaker than those in the particle ind=3

hole channel, since a BCS-type ladder resummation chang&@ntribution toxs : _ _
a Inx singularity into a Inlx, and ax’ singularity into a This result agrees with the conclusion of Ref. 13, which

xY/Inx. We expect this mechanism to work in the presen eached it on the basis O_f Fermi-liquid theory. We d_ise_lgree,
problem, so the particle-particle channel singularities aré'©WVeVver: with the assertion of that reference that within the

robably in fact asymptotically negligible compared to the'’ ) : X
Sarticleiole channgl or:1es. Wg als% gote that spo far we ha\;@e T2InT is due to cancellations between vertex corrections

not really established that higher-order terms in the perturbae-md_ self—ener:gies, ar)ddig henc;z a cr(])nsequer;lcz.of gauge in-
tion expansion cannot lead to stronger singularities than thyariance. What we find instead is that, for all diagrams in

ones we found at second order in the interaction amplitudes.'9: 4: theT?InT terms vanish individually. This is consistent
This point will be further discussed in Sec. IV below. with the result of Ref. 24. These authors calculajedin
paramagnon approximation, which in our language corre-

sponds to taking only®) and (" into account, plus infinite
resummations that contribute to higher orders in the interac-

In the last two subsections we have established yha  tion amplitudes. They reported the absenc& 9T terms in
d=3 at T=0 does indeed have a nonanalytic contributiontheir calculation, rather than their cancellation between the
proportional toQ?In|Q|. As we pointed out in the Introduc- two diagrams.

amework of microscopic perturbation theory the absence of

E. Temperature dependence ofys(Q=0)
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This absence of the expected nonanalytidependence in
d=3 is somewhat accidental. This can be seen from the
one-dimensional case, where, as pointed out in Sec. IlIB,
there is a I contribution to the homogeneous spin suscep-
tibility. The technical reason is that id=1, integrands a,g q, Q
whose only singularities are poles do contribute to the  pp---- -->
T2InT terms. Consequently, il=1 T and Q are inter-
changeable in the logarithmic terms, whiledrs 3 they are
not. Furthermore, the same types of integrals that lead to a
InT term ind=1 also contribute to &%~ nonanalyticity in
1<d<3. In these dimensions we therefore expect to find % -

kK+q, @+ Q

X2 "(Q=0)=2Ng+2Ng(T'\Ng)?cq(T/Aeg) Y, _ -
(3.19 FIG. 5. Mode-mode coupling process describing the decay of a
current modgdashed linginto two sound modessolid lines.
with ¢4 a d-dependent, positive number.
We also mention that the absence of @nT term in the  humber and the nature of the soft modes in these systéms.
self-energy diagrams id=3 does not contradict the pres- disordered Fermi liquidsone has
ence of such a term in the specific-heat coefficient. The re-
lation between the specific heat and the Green’s function is D(Q)/D(0)=1+b"(iQ)d-2"2 (4.10
intricate? and the resulting integrals have a different struc- ' '

ture from the ones that determing. with b”>0. Here the sign is the same as in the classical

Lorentz model, which is due to the quenched disorder in

IV. DISCUSSION either system. The strength of the long-time tail, however, is
equal to that in the classical real fluid. As mentioned in Sec.
I, the coupling of statics and dynamics in quantum statistical

In this section we give a more detailed look at the mode-mechanics leads to a related nonanalyticity in the static spin
mode coupling arguments that were presented in the Introsusceptibility of a disordered Fermi liquid, namely,
duction. We also stress some analogies between classical and
qguantum fluids, and discuss some important differences be- xs(Q)/xs(0)=1—c|Q|¢2 4.2
tween clean and disordered systems. s s '

Let us consider four distinct systenfd) a classical Lor-  ith ¢>0.
entz model(i.e., a classical particle moving in a spatially  on the basis of these results, it is possible to predict both
random array of scatteréf, (2) a classical fluid(3) a Fermi  ne strength of the singularity, and the sign of the prefactor,
liquid with static impurities, and4) a clean Fermi liquid. j, the Q dependence ofs in a clean Fermi liquid, which is
These systems represent classical and quantum fluids Wifhat we are mainly concerned with in this paper. In order to
and without quenched disorder, respectively. As pointed oUfj, o, Jet us recall the origin of the nonanalyticity in the
in the Introduction, dynamical correlations are ultimately re-g|assical fluid, Eq(4.10. The density excitation spectrum,
sponsible for all of the effects discussed in this paper. How; o the dynamical structure factor as measured in a light-
ever, in classical systems they do not manifest themselves i attering experiment, in a classical fluid consists of three
static equilibrium properties, while in quantum systems theymain features: the Brillouin peaks that describe emission and
do. In order to discuss the analogies between classical ar%gosorption of sound waves, and the Rayleigh peak that de-
quantum systems, let us therefore digress and consider &@yipes heat diffusion. For our purposes, we focus on the
equilibrium time correlation function. A convenient choice is former. In the density-density Kubo correlation function,
the current-current correlation function, whose Fourier transc(k’w) [whose spectrum is in a classical system simply pro-

form determines the frequency-dependent diffusiBif()).  portional to the structure fact@(k, )], they manifest them-
In both of the classical systemd,) and(2), this correlation  gajyes as simple polds

function exhibits a long-time tail, sB ({2) is nonanalytic at
0 =0. ForQQ—0 one finds for the classical Lorentz model,

A. Our results in a mode-mode coupling theory context

1
C(k,w)~ . + .
D(Q)/D(0)=1+aiQ+hb(iQ)%? (4.13 (k) w—vk+iyk¥2 = w+vk—iyk?2
while for the classical real fluid one finds =C.(k,w)+C_(k,w), 4.3
D(Q)/D(0)=1—b'(iQ)d-272, (4.10) wherev is the speed of sound, andis the sound attenuation

constant. Now let us consider the simplest possible mode-
The coefficientsb and b’ in Egs. (4.1) are positive. The mode coupling process that contributes to Hd.1b),
long-time tail in the real fluid is stronger than the one in thenamely, one where a current mode decays into two sound
Lorentz gas because the former has more soft modes. Moreodes that later recombine; see Fig. 5. Consider a process
importantly, the static scatterers in the Lorentz gas lead to where one of the internal sound propagators@.,a and the
sign of the effect that is different from the one in the realother aC_. At zero external wave number, this leads to a
fluid. All of these features can be understood in terms of theonvolution integral,
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by the fact that the homogeneous spin susceptibility is finite

f dwf dkC,(k,0)C_(—k,—w+Q) in perturbation theory. The nonanalytic corrections at finite
wave number that we are interested in correspond to the

1 leading correction to scaling in the vicinity of the Fermi-

Nf dkmNQ(d_z)/z- (4.4a  liquid fixed point, i.e., to an irrelevant operator with respect

to that fixed point. Among the irrelevant operators, there thus
Note that by this mechanism the long-time tail in a systemmust be one whose scale dimension determines the leading
whose low-lying modes have a linear dispersion becomes agave-number dependence of the spin susceptibility.
strong as the one in a system with diffusive modes. In con- An identification of this operator within the framework of
trast, if both of the sound propagators &e or C_, one arenormalization-group analysis would not only provide an-

obtains a weaker singularity, other derivation of our result, but would also establish that
the behavior we have found in perturbation theory consti-

f dﬂf dkC, (K,®)C. (—k,— w+0Q) t_utes the _Ieadlngg erendence tall orders in the_lnterac-
tion amplitudes. This program has not been carried out yet,

1 although preliminary results are encouragtigrhis will
Nf dk——— ~ -1 (4.4p  provide a connection between the mode-mode coupling ar-
Q—2vk+i0 guments presented in the previous subsection and
Now let us consider the corresponding quantum system, i.ef€normalization-group arguments that will be analogous to a
the clean Fermi liquid. Again, the low-lying modése. corresponding connection in classical fluids that has been
particle-hole excitationshave a linear dispersion. However, Known to exist for some time. _ _
at zero temperature the structure factor and the Kubo func- In this context it should also be mentioned that there is no
tion are no longer proportional to one another. Rather, thaNiversal agreement that the ground state of a weakly inter-
fluctuation dissipation theorem shows that they are related b§cting Fermi system in>1 is a Fermi liquid. It has been
a Bose distribution function that eliminates the pole atProposed that there exists a relevant operator that makes the
w=ck from the structure factor. This is simply a conse- Fermi-liquid fixed point unstable, and leads to a non-Fermi-
quence of the fact that at zero temperature there are no e¥duid ground sta’gé? In order to destroy the Fermi liquid in
citations that could get destroyed in a scattering procesdl dimensions, this would require a long-range effective in-
Consequently, the process described by Egda is not  teraction that falls off more slowly than r#/ at large dis-
available in this system, and one is left with the weakertances. While we do find an effective long-range interaction
singularity of Eq.(4.4b. Since the diffusion coefficient is betg/é/g?n the spin degrees of freedom, it falls off like
infinite atT=0 in a clean system, we look instead at the spinl//* ", and hence leaves the Fermi-liquid fixed point intact.
susceptibility as a function o®. Q scales likeQ), so we The same conclusion was reached in Ref. 11 from studying
expect a singularity of the forQ|?%, as opposed to the the specific heat inl=2.
|Q|9 2 in a disordered Fermi liquid, Eq4.2). The sign of
the prefactor is determined by whether or not the system C. Summary, and physical consequences of our result
contains qu_enched _dlsorder. It should therefore be opposite \ye finally turn to a summary of our results, and to a
to the sign in the dirty case. We thus expect for the wavejiscussion of their physical consequences. By means of ex-

number dependence of the spin susceptibility in a cleanyicit perturbative calculations to second order in the inter-
Fermi liquid, action, we have found that the wave-number-dependent spin

X(Q)/xs(0)=1+¢’|Q|?" 1, (4.5) susceptibility ind=3 has the form

with ¢’>0. This is precisely what we found in Sec. Ill by  Xs(Q)/xs(Q=0)=1+c5(Q/2ke)?IN(2ke/|Q|) +O(Q?).
means of perturbation theory. Notice that the mode-mode (4.69

coupling arguments suggest that the sign of the prefactogye have calculated the particle-hole channel contribution to
¢’ will be positive, regardless of the interaction strength, ashe constant;, and have found it to be positive. More gen-
is the sign of the long-time tail in a classical fluid. We will grgjly, it follows from our analysis that in-dimensional
come back to this point in Sec. IVC below. systems, the spin susceptibility has a nonanalyticity of the
form
B. Our results in a renormalization-group context

— — d-1 2
Another useful way to look at our results is from a Xs(Q) xs(Q=0) =1+ cq(|Ql/2Kke)**+0(Q%),
- . . A (4.6b
renormalization-group point of view. The Fermi-liquid
ground state of interacting fermion systemsdin 1 has re- where the particle-hole channel contributiondg is again
cently been identified with a stable fixed point in positive.
renormalization-group treatments of both a basic fermion A very remarkable feature of Eqe1.6) is the sign of the
theory!® and a bosonized version of that thefyThe insta-  leadingQ dependence: Fat<3, y, increaseswith increas-
bility of the Fermi liquid ind=1 is reflected by an infinite ing |Q| like |Q|%~ 2. For any physical system for which this
number of marginal operators whose scale dimensions amgere the true asymptotic behavior at sm@l this would
proportional tod—1, i.e., they all become relevant in have remarkable consequences for the zero-temperature
d<1, and are irrelevant id>1. In the present context, the phase transition from the paramagnetic to the ferromagnetic
Fermi-liquid nature of the ground state d*>1 is reflected state as a function of the exchange coupling. One possibility
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is that the ground state of the system will not be ferromagtribution might have a negative sign that overcompensates
netic, irrespective of the strength of the spin triplet interac-the positive contribution from the particle-hole channel, or
tion, since the functional form of leads to the instability of (4) the higher angular momentum channels that we neglected
any homogeneously magnetized ground statastead, with  might lead to a different sign. At this point, none of these
increasing interaction strength, the system would undergo possibilities can be ruled out mathematically. However, from
transition from a paramagnetic Fermi liquid to some othera physical point of view none is very likely to occur. As we
type of magnetically ordered state, most likely a spin densityhave explained in Sec. IV A, both the functional form and the
wave. While there seems to be no observational evidence faign of the nonanalyticity found in perturbation theory are in
this, let us point out that in=3 the effect is only logarith- agreement with what one would expect on the basis of a
mic, and would hence manifest itself only as a phase transisuggestive analogy with classical fluids. Also, the
tion at exponentially small temperatures, and exponentiallyenormalization-group arguments sketched in Sec. IVB
large length scales, that might well be unobservable. Fomake it appear likely that Eq$4.6) constitute the actual
d<2, on the other hand, there is no long-range Heisenbergsymptotic smallQ behavior of x5, although an actual
ferromagnetic order at finite temperatures, and the suggesenormalization-group proof of this is still missing. This
tion seems less exotic. Furthermore, any finite concentratiomakes the first two possibilities appear unlikely. The third
of quenched impurities will reverse the sign of the leadingpossibility is unappealing for two reasons. First, the effective
nonanalyticity, and thus make a ferromagnetic ground stat@teraction in the particle-particle channel is typically much
possible again. weaker than the one in the particle-hole channel. The reason

Another possibility is that the zero-temperatureis the characteristic ladder resummation that occurs in the
paramagnet-to-ferromagnet transition is of first order. It hagarticle-particle channel if one goes to higher orders in per-
been shown in Ref. 9 that the nonanalyticityg(Q) leads turbation theory. This leads to an effective interaction of the
to a similar nonanalyticity in the magnetic equation of state,‘Coulomb pseudopotential” type that is much weakgpi-

which takes the form cally by a factor of 5—1pthan what low-order perturbation
g 5 theory seems to suggesStSecond, that same resummation
tm—vgm°+um=h, (4.7)  weakens any singulariticf. the discussion at the end of Sec.

with m the magnetizatiorh the external magnetic field, and !l D), which probably makes the particle-particle channel
u>0 a positive coefficient. If the soft mode mechanism dis-Singularity subleading. Finally, the higher angular momen-

cussed above is the only mechanism that leads to nonanalfm Fermi-liquid parameters are usually substantially
ticities, then the sign of the remaining coefficiantn Eq.  Smaller than the ones &t=0, which makes possibility4)

(4.7) should be the same as that of in Eq. (4.6b, i.e., unlikely, except possibly in particular systems.

vys>0. This would imply a first-order transition for _ !fthe sign of the nonanalyticity is, for some reason, nega-
1<d<3. In this case the length scale that in the previoué've "’.‘t. the coupling strength. hecessary for a ferromagnetlc
paragraph would have been attributed to a spin density wa&ansition to occur, at least in some systems, then in these
would instead be related to the critical radius for nucleatiorbyStems the quantum phase transition from a paramagnet to a

at the first-order phase transition. Further work will be nec_fgrromagnet at zero temperature as a funct.ion of the Interac-
essary to decide between these possibilities tion strength will be a conventional continuous quantum

The conclusion that there is no continuous zero-Phase transition with an interesting critical behavior. This is

temperature paramagnet-to-ferromagnet transition is inesca ecause the n_onanalyt|C|ty m;_leads to an effectl_ve Ipng-
able for any system with a particle-hole channel interactiof@"9€ interaction between spin fluctuations, which in turn
that is sufficiently weak for our perturbative treatment to be eads to critical be_haV|0r that is not mean-field-like, yet ex-
directly applicable. An important question is now whether oratly solvable. This has been discussed recently in some
not it holds more generally for systems whose interactiond€t@il-

are in general not weak. There are four obvious mechanisms
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