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Influence of Rare Regions on Magnetic Quantum Phase Transitions

Rajesh Narayanan,1 Thomas Vojta,1,2 D. Belitz,1 and T. R. Kirkpatrick3
1Department of Physics and Materials Science Institute, University of Oregon, Eugene, Oregon 97403

2Institut für Physik, TU Chemnitz, D-09107 Chemnitz, Germany
3Institute for Physical Science and Technology, and Department of Physics, University of Maryland, College Park, Maryland 20742

(Received 12 March 1999)

The effects of quenched disorder on the critical properties of itinerant quantum magnets are
considered. Particular attention is paid to locally ordered rare regions that are formed in the presence
of quenched disorder even when the bulk system is still in the nonmagnetic phase. It is shown
that these local moments or instantons destroy the previously found critical fixed point in the case
of antiferromagnets. In the case of itinerant ferromagnets, the critical behavior is unaffected by
the rare regions due to an effective long-range interaction between the order parameter fluctuations.
[S0031-9007(99)09426-0]

PACS numbers: 75.20.Hr, 75.10.Jm, 75.30.Kz

Rare regions and their influence on observables is an im-
portant, if intricate, aspect of systems with quenched dis-
order. An effect that has been known for a long time is
the formation of a Griffiths region [1]. To explain this,
let us consider a ferromagnet for definiteness. Disorder
will decrease the critical temperature from its clean value,
T0

c , to a valueTc , T0
c in the disordered system. In the

temperature regionTc , T , T0
c the system does not dis-

play global order, but one will find regions that are devoid
of any impurities and hence show local magnetic order.
The probability of finding such a “rare region” in general
decreases exponentially with its size. The resulting mag-
netization fluctuations have very slow dynamics. They are
often called “local moments” or “instantons,” and they lead
to a nonanalytic free energy for all temperatures belowT0

c ,
even though no long-range order develops until the tem-
perature reachesTc. For generic classical systems this is
a weak effect, the singularity being only an essential one.
An important exception is the model studied by McCoy
and Wu [2], which is a two-dimensional (2D) Ising model
with random bonds in one direction, but identical bonds in
the second direction. The infinite correlation of the disor-
der in this model leads to much stronger effects, with the
average magnetic susceptibility diverging in a finite-width
temperature region aboveTc. The transition atTc is nev-
ertheless sharp. The divergence of the average suscepti-
bility for T . Tc is caused by atypical fluctuations in the
susceptibility distribution, and the averaged order parame-
ter becomes nonzero only forT , Tc. The temperature
regionTc , T , T0

c is known as a Griffiths region. Little
is known about the influence of rare regions on the critical
behavior atTc, and in the conventional theory of the criti-
cal behavior of disordered magnets [3] the rare regions are
neglected.

Recent work [4] on a random-Tc classical Ising model
has suggested that the effects of the rare regions go be-
yond the formation of a Griffiths region, even in this simple
model where the conventional theory [3] predicts standard
power-law critical behavior. These authors showed that

the conventional theory is unstable with respect to pertur-
bations that break the replica symmetry. By approximately
taking into account the rare regions, they found a new term
in the action that actually induces such perturbations. In
some systems replica symmetry breaking is believed to be
associated with activated, i.e., nonpower law, critical be-
havior. Although no final conclusion about the fate of the
transition could be reached, Ref. [4] thus raised the possi-
bility that the random-Tc classical Ising model shows ac-
tivated critical behavior as a result of rare-region effects,
as is believed to be the case for the random-field classical
Ising model [5].

The problem of rare regions is even less well inves-
tigated for the case of quantum phase transitions, i.e.,
transitions that occur atT ­ 0 as a function of some non-
thermal control parameter [6]. An important exception to
this are certain 1D systems. Fisher [7] has investigated
quantum Ising spin chains in a transverse random field,
which is closely related to the classical 2D McCoy-Wu
model (with time playing the role of the dimension along
which the disorder is correlated). He found activated criti-
cal behavior due to rare regions. This and other predictions
have been confirmed by numerical simulations as well as
more analytical work [8]. Recent simulations [9] suggest
that activated critical behavior may not be restricted to 1D
systems raising the possibility that exotic critical behavior
dominated by rare regions may be generic in quenched dis-
ordered quantum systems.

Apart from their relevance for disordered magnets and
their critical properties, rare regions are believed to be a
crucial ingredient for understanding other systems with
quenched disorder. For instance, it has been proposed
that a complete understanding of the properties of doped
semiconductors, and of the metal-insulator transitions that
are observed in such systems as a function of doping,
requires the consideration of local moments [10–12].

In this Letter we study this important problem analyti-
cally for quantum phase transitions ind . 1. We con-
centrate on magnetic transitions and contrast the cases

5132 0031-9007y99y82(25)y5132(4)$15.00 © 1999 The American Physical Society



VOLUME 82, NUMBER 25 P H Y S I C A L R E V I E W L E T T E R S 21 JUNE 1999

of itinerant ferromagnets (FMs) and antiferromagnets
(AFMs), respectively. We find that for the latter, the rare
regions destroy the critical fixed point (FP) found in a
previous study [13], and thus have a profound effect on
the critical behavior. In contrast, for itinerant FMs we
find that, for certain realizations of the disorder, the pre-
viously found critical behavior [14] is stable with respect
to rare regions, due to an effective long-range interaction
between the spin fluctuations. In addition, we find that
the ultimate effects of the rare regions depend on how the
disorder is realized in a particular system. Therefore, no
generally valid conclusions are possible, and the effects of
rare regions must be studied carefully and separately for
each system under consideration.

Let us first consider the case of itinerant quantum
antiferromagnets. Our starting point is the same as in
Ref. [13], namely, Hertz’s action, which is af4 theory for
ap-component order parameter fieldf whose expectation
value is proportional to the staggered magnetization. The
action reads

S ­
Z

dx dy fsxdGsx, ydfs yd

1 u
Z

dx ffsxd ? fsxdg2. (1a)

Herex ; sx, td comprises positionx and imaginary time
t, and

R
dx ;

R
dx

R1yT
0 dt. We use units such thath̄ ­

kB ­ 1. Gsx, yd is the bare two-point vertex function,
whose Fourier transform is

Gsq, vnd ­ st 1 q2 1 jvnjdy2 . (1b)

Heret denotes the distance from the critical point,q is the
wave vector,vn is a bosonic Matsubara frequency, and we
measure bothq andvn in suitable units.

Disorder is introduced by makingt a random function
of position,t ­ t0 1 dtsxd, wheredtsxd obeys a Gaussian
distribution with zero mean and varianceD. The standard
procedure is to integrate out the “random mass”dtsxd
by means of the replica trick [3], which produces a term
of order f4 with coupling constantD, in addition to
the ordinary quantum fluctuation term in Eq. (1a) with
coupling constantu. The resulting theory does not easily
allow for saddle-point solutions that are inhomogeneous
in space, and to incorporate rare regions into it would be
very difficult. We therefore follow a different procedure.
In analogy to Ref. [4], we consider inhomogeneous saddle-
point solutions of the theory for afixed realization of the
disorder. The inhomogeneity comes about sincedtsxd
has “troughs” that maket , 0 in some region in space,
even thought0 . 0. Troughs that are sufficiently deep
and wide support locally nonzero saddle-point solutions.
These regions we will refer to as “islands.” Outside of the
islands, the solution is exponentially small. This means
that for a system withN islands, and in the case of an Ising
model (p ­ 1), there will be2N almost degenerate saddle-

point solutions that can be constructed by considering all
possible distributions of the sign of the order parameter on
the islands. Forp . 1 there is a whole manifold of almost
degenerate saddle points.

Let Fsxd be one of these saddle-point solutions, and let
us consider fluctuations about it,fsxd ­ Fsxd 1 wsxd
[15]. The different saddle points are far apart in configu-
ration space and separated by large energy barriers. If we
restrict ourselves to small fluctuations about each saddle
point, we can therefore write the partition function ap-
proximately as the sum of all contributions obtained from
the vicinity of each saddle point,

Z ø
Z

DfFsxdgPfFsxdg
Z

,

Dfwsxdge2SfFsxd1wsxdg,

(2)

wherePfFsxdg denotes the distribution of saddle points,
and

R
, indicates an integration over small fluctuations

only. It is clear that this approximation takes into account
effects that one would call “nonperturbative” in a standard
treatment of quenched disorder. Also, consistent with our
approximations, it can be shown that the inhomogeneous
saddle-point solutions lead to a lower free energy than the
homogeneous saddle pointfsxd ; 0.

Performing the integration over theF in Eq. (2) explic-
itly is very difficult, and the result will in general depend on
the properties of the distribution functionP, which in turn
depend on the details of the miscroscopic disorder. How-
ever, a very basic observation simplifies our task: The
Fsxd represent static randomness, and the average over
this randomness is performed for the partition function.
That is, we are dealing with static, annealed disorder. This
is physically sensible, as the local moments are a self-
generated part of the system and therefore in equilibrium
with the rest of the degrees of freedom [15]. In addition,
of course, there is quenched disorder due to the underly-
ing random mass term. This we handle by means of the
replica trick. If we assume that the distribution of theF
is short-range correlated (which will be the case for certain
classes of realizations of the disorder, but not for others),
we can immediately write down the effective action up to
and including terms ofOsw4d:

Seff ­
X
a

Z
dx dy wasxdG0sx, ydwas yd

1 u
X
a

Z
dx fwasxd ? wasxdg2 2

X
a,b

sD 1 wdabd

3
Z

dx dy dsx 2 yd fwasxdg2fwbs ydg2 1 Osw6d .

(3)

HereG0 is the Gaussian vertex, Eq. (1b), witht ­ t0, D is
the variance of the Gaussian random mass distribution, and
a andb are replica indices.w is the coupling constant
of the annealed disorder term. We have also derived
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Eq. (3) by means of a detailed technical procedure which
will be reported elsewhere [16]. The technical derivation
shows thatw has the formw ­ u2y, with y characteristic
of the distributionP, and it also yields terms ofOsw6d
and higher. These turn out to be less relevant for the
critical behavior than the quartic terms shown in Eq. (3).
Notice that the annealed disorder contribution becomes
indistinguishable from the usualw4 or u term in the case of
a classical transition. This is the reason why the authors of
Ref. [4], who studied classical magnets, considered replica
symmetry breaking in order to describe nontrivial effects
of the rare regions. In the quantum case we get a nontrivial
effect even at the level of a replica symmetric theory,
which means that the influence of rare regions on quantum
transitions is stronger.

To discuss the properties of the effective action, Eq. (3),
we proceed as in Ref. [13]. We considerd ­ 4 2 e

space dimensions andet time dimensions, and control
perturbation theory by means of a double expansion ine

and et [17]. Defining w̄ ­ wT2et , and puttingT ­ 0,
we obtain the following renormalization group (RG) flow
equations to one-loop order,

du
dl

­ se 2 2etdu 2 4sp 1 8du2 1 48uD , (4a)

dD

dl
­ eD 1 32D2 2 8sp 1 2duD 1 8pDw̄ , (4b)

dw̄
dl

­ se 2 2etdw̄ 1 4pw̄2 2 8sp 1 2duw̄ 1 48Dw̄ .

(4c)

An analysis of Eqs. (4) shows that they possess eight FPs.
Four of them have a vanishing FP value ofw̄, w̄p ­ 0,
and have been discussed before in Ref. [13]. Of particu-
lar interest is the nontrivial critical FPup ­ se 1 etdy
16sp 2 1d, Dp ­ fs4 2 pde 1 4sp 1 2detgy64sp 2

1d, w̄p ­ 0, which on thew̄ ­ 0 hypersurface is stable for
p smaller than somepc. To one-loop order, and fore ­
et , pc ­ 16. A linear stability analysis reveals that the
third eigenvalue, lw̄ ­ s4 2 pd se 1 4etdy4sp 2 1d,
is positive for p , 4. In the most interesting case
p ­ 3, w̄ is thus a relevant operator with respect to this
FP, which means that the rare regions destroy the FP. It
is, however, interesting to note that forp . 4 the FP is
stable and describes power-law critical behavior. There
also are four FPs with̄wp fi 0. They are all unstable ex-
cept for one withw̄p ­ sp 2 4d se 1 4etdy8ps10 2 pd,
which is negative forp , 4. Since the bare value of̄w is
positive, and the structure of the flow equations does not
allow for w̄ to change sign, this FP is unphysical. There
is thus no new FP forp , 4, and a numerical solution of
the flow equations reveals runaway flow in all of physical
parameter space.

We conclude that forp , 4 the AFM long-range order
found in Ref. [13] is unstable against effects induced by
rare regions, a result that is consistent with the previous

suggestion that AFM long-range order is strongly sup-
pressed by quenched disorder [10]. However, other possi-
bilities exist. For instance, there could be a transition to a
long-range ordered state, but with activated critical behav-
ior which manifests itself as runaway flow in a perturba-
tive RG calculation. The viability of this latter suggestion
is underscored by the fact that a calculation of the local
moment contribution to the order parameter susceptibility
yieldsxLMsT d , 1yT [16]. This is similar to Fisher’s 1D
resultxsT d , 1yTg with g , 1 [7]. (Our exponent value
of unity is a result of our saddle-point approximation for
the local moments.) This shows that we are really describ-
ing a Griffiths region, which was shown in Ref. [7] to lead
to a transition with activated critical behavior ind ­ 1. A
third possibility is that a conventional critical FP exists but
cannot be described with perturbative RG methods. This
possibility is consistent with the stability of conventional
critical behavior against̄w for p . 4, as discussed above.

We now turn to the case of itinerant ferromagnets, which
constitute an interesting contrast to the AFM case. In
Ref. [14] it was shown that a description of itinerant FMs
that neglects rare regions leads to an action that has the
same form as Eq. (3) withw ­ 0, except that the bare two-
point vertex function reads

GFM
0 sq, vnd ­ st0 1 jqjd22 1 q2 1 jvnjyq2dy2 , (5)

and that the fieldwsxd now describes ferromagnetic fluc-
tuations. There are two crucial, and related, differences
between Eq. (5) and its AFM counterpart. The first one is
the structure of the frequency dependence, which enters as
jvnjyq2 [18] and reflects the diffusive nature of the spins in
a disordered environment. In Ref. [14] it was shown that
the same diffusive spin dynamics leads to thejqjd22 term,
which dominates the usual gradient squared term as long as
d , 4. In the original treatment of quantum FMs by Hertz
[18], loop corrections would have been required to find this
term, while the method of Ref. [14] builds it into the bare
theory. Consequently, the correlations between the spin
density fluctuations are effectively long ranged, a feature
that is well known to stabilize the Gaussian critical behav-
ior [19]. Indeed, it was shown in Ref. [14] that the Gauss-
ian critical behavior, withh ­ 4 2 d, n ­ 1ysd 2 2d,
g ­ 1, andz ­ d, is stable for2 , d , 4. Hereh, n,
and g are the usual critical exponents, andz is the dy-
namical critical exponent. They can all be simply read
off Eq. (5). The exponentsb andd were also determined
in Ref. [14], their values ind ­ 3 areb ­ 2, d ­ 3y2.
The remarkable claim of Ref. [14] was that these exponent
values, which ind ­ 3 are very different from both mean-
field values and classical Heisenberg values, constitute the
exactcritical behavior of itinerant quantum FMs.

An obvious question is whether this claim survives the
consideration of rare regions. To answer this, we perform
an analysis analogous to the one for AFMs above. A
simple way to incorporate the rare regions into the action
is to write the quenched disorder orD term in the action
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as a random mass in the Gaussian vertex (i.e., to “undo”
the integrating-out of the random mass), to construct
inhomogeneous saddle-point solutions and expand about
them, and then to integrate over the manifold of saddle
points as in the AFM case. Clearly, this leads to aw term
in the action, as in Eq. (3). We have derived the same
result starting from a more microscopic formulation. We
will report the details of the derivation elsewhere [16], here
we mention only one important point: After Eq. (3) we
mentioned thatw is proportional tou2. Sinceu in the FM
case is wave number dependent and diverges in the short-
wavelength limit (i.e., its bare scale dimension is negative)
[14], this raises the question whether the bare value ofw is
finite. The answer is affirmative, since thew term arises
from field configurations that are nonzero only on islands.
Theu that contributes to the bare value ofw therefore has
to be taken at wave numbers that are on the order of a
typical inverse island size and hence is finite. Once again
it is important here that the island size distribution falls off
exponentially for large sizes. We can thus treatw as a
number.

Now let us perform a power counting analysis to deter-
mine the stability properties of the Gaussian FP. Assigning
a lengthL a scale dimensionfLg ­ 21, the scale dimen-
sion of the imaginary time isftg ­ 2z ­ 2d. For the
scale dimension of the field we findfwsxdg ­ sd 1 2dy2.
The scale dimensions of bothw andD then becomefwg ­
fDg ­ 4 2 d; i.e., they are irrelevant with respect to the
Gaussian FP ford , 4, and marginal ind ­ 4. Terms
of higher than quartic order inw that are produced by a
technical derivation of the effective action [16] turn out to
also be irrelevant. We thus conclude that the FM criti-
cal behavior determined previously [14] isstableagainst
rare regions physics, in sharp contrast to the AFM case.
The reason for this qualitative difference is the effective
long-ranged interaction between the order parameter fluc-
tuations [as expressed in Eq. (5) and in the value of the
exponenth], which is sufficient to suppress all disorder
fluctuations, including the ones due to rare regions. By
the same arguments, the FM Gaussian FP is also stable
against replica symmetry breaking.

We conclude with one additional remark. One might
ask why the rare regions or local moments do not cut off
the singular wave number dependencesjqjd22 andjvnjyq2

in the Gaussian vertex, Eq. (5). The reason why this does
not happen is that both singularities are consequences of
spin diffusion, which in turn is a consequence of the spin
conservation law. The rare regions ultimately derive from
a spin-independent disorder potential, which clearly can-
not destroy spin conservation. We note, however, that the
above arguments are restricted to a tree-level analysis of
our effective field theory. Although the effective theory is
a sophisticated one, which at tree level contains many ef-
fects that would require loops in more standard treatments,
we of course cannot exclude the possibility that loop cor-
rections might lead to qualitatively new terms in the action.

If such new terms included a RG-generated spin dependent
potential, then this might change our conclusions. How-
ever, at such a level of analysis one would also have to in-
clude effects due to interactions between the rare regions,
which we have mostly neglected. Such interactions are
known to weaken the effects of the rare region [11], but in
general it is not known by how much.
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Ferdinand Evers and John Toner. This work was sup-
ported by the NSF under Grants No. DMR-98-70597
and No. DMR-96-32978, and by the DFG under Grant
No. SFB 393yC2.
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