109 research outputs found

    Comptonisation of Cosmic Microwave Background Photons in Dwarf Spheroidal Galaxies

    Full text link
    We present theoretical modelling of the electron distribution produced by annihilating neutralino dark matter in dwarf spheroidal galaxies (dSphs). In particular, we follow up the idea of Colafrancesco (2004) and find that such electrons distort the cosmic microwave background (CMB) by the Sunyaev-Zeldovich effect. For an assumed neutralino mass of 10 GeV and beam size of 1'', the SZ temperature decrement is of the order of nano-Kelvin for dSph models with a soft core. By contrast, it is of the order of micro-Kelvin for the strongly cusped dSph models favoured by some cosmological simulations. Although this is out of reach of current instruments, it may well be detectable by future mm telescopes, such as ALMA. We also show that the upscattered CMB photons have energies within reach of upcoming X-ray observatories, but that the flux of such photons is too small to be detectable soon. Nonetheless, we conclude that searching for the dark matter induced Sunyaev-Zeldovich effect is a promising way of constraining the dark distribution in dSphs, especially if the particles are light.Comment: 10 pages, 5 figures, MNRAS, in pres

    Fiber optic sensing of magnetic fields utilizing femtosecond laser sculpted microslots and long period gratings coated with Terfenol-D

    Get PDF
    Fiber optic sensors are fabricated for detecting static magnetic fields. The sensors consist of a UV inscribed long period grating with two 50 micron long microslots. The microslots are fabricated using the femtosecond laser based inscribe and etch technique. The microslots and the fiber surface are coated with a magnetostrictive material Terfenol-D. A spectral sensitivity of 1.15 pm/mT was measured in transmission with a working resolution of ±0.2 mT for a static magnetic field strength below 10 mT. These devices also present a different response when the spatial orientation of the fiber was adjusted relative to the magnetic field lines

    Radio Sources from a 31 GHz Sky Survey with the Sunyaev-Zel'dovich Array

    Get PDF
    We present the first sample of 31-GHz selected sources to flux levels of 1 mJy. From late 2005 to mid 2007, the Sunyaev-Zel'dovich Array (SZA) observed 7.7 square degrees of the sky at 31 GHz to a median rms of 0.18 mJy/beam. We identify 209 sources at greater than 5 sigma significance in the 31 GHz maps, ranging in flux from 0.7 mJy to ~200 mJy. Archival NVSS data at 1.4 GHz and observations at 5 GHz with the Very Large Array are used to characterize the sources. We determine the maximum-likelihood integrated source count to be N(>S) = (27.2 +- 2.5) deg^-2 x (S_mJy)^(-1.18 +- 0.12) over the flux range 0.7 - 15 mJy. This result is significantly higher than predictions based on 1.4-GHz selected samples, a discrepancy which can be explained by a small shift in the spectral index distribution for faint 1.4-GHz sources. From comparison with previous measurements of sources within the central arcminute of massive clusters, we derive an overdensity of 6.8 +- 4.4, relative to field sources.Comment: 13 pages, 5 figure

    Localized surface plasmon fiber device coated with carbon nanotubes for the specific detection of CO2

    Get PDF
    We explored the potential of a carbon nanotube (CNT) coating working in conjunction with a recently developed localized surface plasmon (LSP) device (based upon a nanostructured thin film consisting of of nano-wires of platinum) with ultra-high sensitivity to changes in the surrounding index. The uncoated LSP sensor’s transmission resonances exhibited a refractive index sensitivity of Δλ/Δn ~ -6200nm/RIU and ΔΙ/Δn ~5900dB/RIU, which is the highest reported spectral sensitivity of a fiber optic sensor to bulk index changes within the gas regime. The complete device provides the first demonstration of the chemically specific gas sensing capabilities of CNTs utilizing their optical characteristics. This is proven by investigating the spectral response of the sensor before and after the adhesion of CNTs to alkane gases along with carbon dioxide. The device shows a distinctive spectral response in the presence of gaseous CO2 over and above what is expected from general changes in the bulk refractive index. This fiber device yielded a limit of detection of 150ppm for CO2 at a pressure of one atmosphere. Additionally the adhered CNTs actually reduce sensitivity of the device to changes in bulk refractive index of the surrounding medium. The polarization properties of the LSP sensor resonances are also investigated and it is shown that there is a reduction in the overall azimuthal polarization after the CNTs are applied. These optical devices offer a way of exploiting optically the chemical selectivity of carbon nanotubes, thus providing the potential for real-world applications in gas sensing in many inflammable and explosive environments

    Generation of a Conjoint Surface Plasmon by an Infrared Nano‐antenna Array

    Get PDF
    Localized surface plasmons (LSP) excited by optical fields have many potential applications resulting from their ability in detecting ultra‐small, ambient refractive index change. Current methods using surface nano‐patterning by means of lithography have given rise to LSP of limited propagation and interaction lengths, meaning that practical applications remain challenging. This paper describes a new all‐optical method of generating LSP by means of a carefully fabricated low dimensional nano‐structured material by using a direct‐write photochemical lithography. It is shown that the resulting array of localized surface plasmons combine or “Conjoin” to have an unprecedented large interaction length, via coupled evanescent fields, giving rise to superior spectral sensitivities; several orders of magnitude better than those quoted elsewhere and reaching 6×103 nm/RIU in the aqueous regime and 104 nm/RIU in the gaseous regime. Numerical modeling was performed that showed this design of plasmonic platform is capable of producing sensitivities of 105‐106 nm/RIU. We believe the results achieved in this investigation show that a unique conjoint surface plasmon operational mode will significantly impact areas of interest, such as single molecular dynamics, drug delivery systems etc

    LoCuSS: The Sunyaev-Zel'dovich Effect and Weak Lensing Mass Scaling Relation

    Get PDF
    We present the first weak-lensing-based scaling relation between galaxy cluster mass, M_wl, and integrated Compton parameter Y_sph. Observations of 18 galaxy clusters at z~0.2 were obtained with the Subaru 8.2-m telescope and the Sunyaev-Zel'dovich Array. The M_wl-Y_sph scaling relations, measured at Delta=500, 1000, and 2500 rho_c, are consistent in slope and normalization with previous results derived under the assumption of hydrostatic equilibrium (HSE). We find an intrinsic scatter in M_wl at fixed Y_sph of 20%, larger than both previous measurements of M_HSE-Y_sph scatter as well as the scatter in true mass at fixed Y_sph found in simulations. Moreover, the scatter in our lensing-based scaling relations is morphology dependent, with 30-40% larger M_wl for undisturbed compared to disturbed clusters at the same Y_sph at r_500. Further examination suggests that the segregation may be explained by the inability of our spherical lens models to faithfully describe the three-dimensional structure of the clusters, in particular, the structure along the line-of-sight. We find that the ellipticity of the brightest cluster galaxy, a proxy for halo orientation, correlates well with the offset in mass from the mean scaling relation, which supports this picture. This provides empirical evidence that line-of-sight projection effects are an important systematic uncertainty in lensing-based scaling relations.Comment: Accepted versio

    An Observed Lack of Substructure in Starless Cores

    Get PDF
    In this paper we present the results of a high resolution (5") CARMA and SZA survey of the 3mm continuum emission from 11 of the brightest (at 1.1mm) starless cores in the Perseus molecular cloud. We detect 2 of the 11 cores, both of which are composed of single structures, and the median 3 sigma upper limit for the non-detections is 0.2 M_sun in a 5" beam. These results are consisent with, and as stringent as, the low detection rate of compact 3mm continuum emission in dense cores in Perseus reported by Olmi et al. (2005). From the non-detection of multiple components in any of the eleven cores we conclude that starless core mass functions derived from bolometer maps at resolutions from 10"-30" (e.g. with MAMBO, SCUBA or Bolocam) are unlikely to be significantly biased by the blending of lower mass cores with small separations. These observations provide additional evidence that the majority of starless cores in Perseus have inner density profiles shallower than r^-2.Comment: 9 pages, including 3 figures and 3 tables. Accepted to Ap

    An ultra-sensitive aptasensor on optical fibre for the direct detection of Bisphenol A

    Get PDF
    We present a plasmonic biosensor capable of detecting the presence of bisphenol A in ultralow concentrations, yielding a wavelength shift of 0.15±0.01 nm in response to a solution of 1 fM concentration with limit of detection of 330±70 aM. The biosensing device consists of an array of gold nano-antennae with a total length of 2.3cm that generate coupled localised surface plasmons (cLSPs) and is covalently modified with an aptamer specific for bisphenol A recognition. The array of nanoantennae is fabricated on a lapped section of standard telecommunication optical fibre, allowing for potential multiplexing and its use in remote sensing applications. These results have been achieved without the use of enhancement techniques and therefore the approach allows the direct detection of bisphenol A, a low molecular weight (228 Da) target usually detectable only by indirect detection strategies. Its detection at such levels is a significant step forward in measuring small molecules at ultralow concentrations. Furthermore, this new sensing platform paves the way for the development of portable systems for in-situ agricultural measurements capable of retrieving data on a substance of very high concern at ultra-low concentrations

    Atmospheric phase correction using CARMA-PACS: high angular resolution observations of the FU Orionis star PP 13S*

    Get PDF
    We present 0".15 resolution observations of the 227 GHz continuum emission from the circumstellar disk around the FU Orionis star PP 13S*. The data were obtained with the Combined Array for Research in Millimeter-wave Astronomy (CARMA) Paired Antenna Calibration System (C-PACS), which measures and corrects the atmospheric delay fluctuations on the longest baselines of the array in order to improve the sensitivity and angular resolution of the observations. A description of the C-PACS technique and the data reduction procedures are presented. C-PACS was applied to CARMA observations of PP 13S*, which led to a factor of 1.6 increase in the observed peak flux of the source, a 36% reduction in the noise of the image, and a 52% decrease in the measured size of the source major axis. The calibrated complex visibilities were fitted with a theoretical disk model to constrain the disk surface density. The total disk mass from the best-fit model corresponds to 0.06 M_⊙, which is larger than the median mass of a disk around a classical T Tauri star. The disk is optically thick at a wavelength of 1.3 mm for orbital radii less than 48 AU. At larger radii, the inferred surface density of the PP 13S* disk is an order of magnitude lower than that needed to develop a gravitational instability
    corecore