122 research outputs found

    Role of ABO Secretor Status in Mucosal Innate Immunity and H. pylori Infection

    Get PDF
    The fucosylated ABH antigens, which constitute the molecular basis for the ABO blood group system, are also expressed in salivary secretions and gastrointestinal epithelia in individuals of positive secretor status; however, the biological function of the ABO blood group system is unknown. Gastric mucosa biopsies of 41 Rhesus monkeys originating from Southern Asia were analyzed by immunohistochemistry. A majority of these animals were found to be of blood group B and weak-secretor phenotype (i.e., expressing both Lewis a and Lewis b antigens), which are also common in South Asian human populations. A selected group of ten monkeys was inoculated with Helicobacter pylori and studied for changes in gastric mucosal glycosylation during a 10-month period. We observed a loss in mucosal fucosylation and concurrent induction and time-dependent dynamics in gastric mucosal sialylation (carbohydrate marker of inflammation), which affect H. pylori adhesion targets and thus modulate host–bacterial interactions. Of particular relevance, gastric mucosal density of H. pylori, gastritis, and sialylation were all higher in secretor individuals compared to weak-secretors, the latter being apparently “protected.” These results demonstrate that the secretor status plays an intrinsic role in resistance to H. pylori infection and suggest that the fucosylated secretor ABH antigens constitute interactive members of the human and primate mucosal innate immune system

    The dual glucose-dependent insulinotropic peptide and glucagon-like peptide-1 receptor agonist, tirzepatide, improves lipoprotein biomarkers associated with insulin resistance and cardiovascular risk in patients with type 2 diabetes

    Get PDF
    Aim To better understand the marked decrease in serum triglycerides observed with tirzepatide in patients with type 2 diabetes, additional lipoprotein-related biomarkers were measured post hoc in available samples from the same study. Materials and Methods Patients were randomized to receive once-weekly subcutaneous tirzepatide (1, 5, 10 or 15 mg), dulaglutide (1.5 mg) or placebo. Serum lipoprotein profile, apolipoprotein (apo) A-I, B and C-III and preheparin lipoprotein lipase (LPL) were measured at baseline and at 4, 12 and 26 weeks. Lipoprotein particle profile by nuclear magnetic resonance was assessed at baseline and 26 weeks. The lipoprotein insulin resistance (LPIR) score was calculated. Results At 26 weeks, tirzepatide dose-dependently decreased apoB and apoC-III levels, and increased serum preheparin LPL compared with placebo. Tirzepatide 10 and 15 mg decreased large triglyceride-rich lipoprotein particles (TRLP), small low-density lipoprotein particles (LDLP) and LPIR score compared with both placebo and dulaglutide. Treatment with dulaglutide also reduced apoB and apoC-III levels but had no effect on either serum LPL or large TRLP, small LDLP and LPIR score. The number of total LDLP was also decreased with tirzepatide 10 and 15 mg compared with placebo. A greater reduction in apoC-III with tirzepatide was observed in patients with high compared with normal baseline triglycerides. At 26 weeks, change in apoC-III, but not body weight, was the best predictor of changes in triglycerides with tirzepatide, explaining up to 22.9% of their variability. Conclusions Tirzepatide treatment dose-dependently decreased levels of apoC-III and apoB and the number of large TRLP and small LDLP, suggesting a net improvement in atherogenic lipoprotein profile.Peer reviewe

    SIRT1 decreases Lox-1-mediated foam cell formation in atherogenesis

    Get PDF
    Aims Endothelial activation, macrophage infiltration, and foam cell formation are pivotal steps in atherogenesis. Our aim in this study was to analyse the role of SIRT1, a class III deacetylase with important metabolic functions, in plaque macrophages and atherogenesis. Methods and results Using partial SIRT1 deletion in atherosclerotic mice, we demonstrate that SIRT1 protects against atherosclerosis by reducing macrophage foam cell formation. Peritoneal macrophages from heterozygous SIRT1 mice accumulate more oxidized low-density lipoprotein (oxLDL), thereby promoting foam cell formation. Bone marrow-restricted SIRT1 deletion confirmed that SIRT1 function in macrophages is sufficient to decrease atherogenesis. Moreover, we show that SIRT1 reduces the uptake of oxLDL by diminishing the expression of lectin-like oxLDL receptor-1 (Lox-1) via suppression of the NF-ÎșB signalling pathway. Conclusion Our findings demonstrate protective effects of SIRT1 in atherogenesis and suggest pharmacological SIRT1 activation as a novel anti-atherosclerotic strategy by reducing macrophage foam cell formatio

    SIRT1 decreases Lox-1-mediated foam cell formation in atherogenesis

    Get PDF
    Aims Endothelial activation, macrophage infiltration, and foam cell formation are pivotal steps in atherogenesis. Our aim in this study was to analyse the role of SIRT1, a class III deacetylase with important metabolic functions, in plaque macrophages and atherogenesis. Methods and results Using partial SIRT1 deletion in atherosclerotic mice, we demonstrate that SIRT1 protects against atherosclerosis by reducing macrophage foam cell formation. Peritoneal macrophages from heterozygous SIRT1 mice accumulate more oxidized low-density lipoprotein (oxLDL), thereby promoting foam cell formation. Bone marrow-restricted SIRT1 deletion confirmed that SIRT1 function in macrophages is sufficient to decrease atherogenesis. Moreover, we show that SIRT1 reduces the uptake of oxLDL by diminishing the expression of lectin-like oxLDL receptor-1 (Lox-1) via suppression of the NF-kappaB signalling pathway. Conclusion Our findings demonstrate protective effects of SIRT1 in atherogenesis and suggest pharmacological SIRT1 activation as a novel anti-atherosclerotic strategy by reducing macrophage foam cell formation

    PARP1 is required for adhesion molecule expression in atherogenesis

    Get PDF
    Aims Atherosclerosis is the leading cause of death in Western societies and a chronic inflammatory disease. However, the key mediators linking recruitment of inflammatory cells to atherogenesis remain poorly defined. Poly(ADP-ribose) polymerase 1 (PARP1) is a nuclear enzyme, which plays a role in acute inflammatory diseases. Methods and results In order to test the role of PARP in atherogenesis, we applied chronic pharmacological PARP inhibition or genetic PARP1 deletion in atherosclerosis-prone apolipoprotein E-deficient mice and measured plaque formation, adhesion molecules, and features of plaque vulnerability. After 12 weeks of high-cholesterol diet, plaque formation in male apolipoprotein E-deficient mice was decreased by chronic inhibition of enzymatic PARP activity or genetic deletion of PARP1 by 46 or 51%, respectively (P < 0.05, n ≄ 9). PARP inhibition or PARP1 deletion reduced PARP activity and diminished expression of inducible nitric oxide synthase, vascular cell adhesion molecule-1, and P- and E-selectin. Furthermore, chronic PARP inhibition reduced plaque macrophage (CD68) and T-cell infiltration (CD3), increased fibrous cap thickness, and decreased necrotic core size and cell death (P < 0.05, n ≄ 6). Conclusion Our data provide pharmacological and genetic evidence that endogenous PARP1 is required for atherogenesis in vivo by increasing adhesion molecules with endothelial activation, enhancing inflammation, and inducing features of plaque vulnerability. Thus, inhibition of PARP1 may represent a promising therapeutic target in atherosclerosi

    Dietary α-linolenic acid diminishes experimental atherogenesis and restricts T cell-driven inflammation

    Get PDF
    Aims Epidemiological studies report an inverse association between plant-derived dietary α-linolenic acid (ALA) and cardiovascular events. However, little is known about the mechanism of this protection. We assessed the cellular and molecular mechanisms of dietary ALA (flaxseed) on atherosclerosis in a mouse model. Methods and results Eight-week-old male apolipoprotein E knockout (ApoE−/−) mice were fed a 0.21 % (w/w) cholesterol diet for 16 weeks containing either a high ALA [7.3 % (w/w); n = 10] or low ALA content [0.03 % (w/w); n = 10]. Bioavailability, chain elongation, and fatty acid metabolism were measured by gas chromatography of tissue lysates and urine. Plaques were assessed using immunohistochemistry. T cell proliferation was investigated in primary murine CD3-positive lymphocytes. T cell differentiation and activation was assessed by expression analyses of interferon-Îł, interleukin-4, and tumour necrosis factor α (TNFα) using quantitative PCR and ELISA. Dietary ALA increased aortic tissue levels of ALA as well as of the n−3 long chain fatty acids (LC n−3 FA) eicosapentaenoic acid, docosapentaenoic acid, and docosahexaenoic acid. The high ALA diet reduced plaque area by 50% and decreased plaque T cell content as well as expression of vascular cell adhesion molecule-1 and TNFα. Both dietary ALA and direct ALA exposure restricted T cell proliferation, differentiation, and inflammatory activity. Dietary ALA shifted prostaglandin and isoprostane formation towards 3-series compounds, potentially contributing to the atheroprotective effects of ALA. Conclusion Dietary ALA diminishes experimental atherogenesis and restricts T cell-driven inflammation, thus providing the proof-of-principle that plant-derived ALA may provide a valuable alternative to marine LC n−3 F

    Conceptual export and theory mobilities: exploring the reception and development of the “creative city thesis” in the post-socialist urban realm

    Get PDF
    This paper addresses the limited contribution of scholarship from within/on the post-socialist urban arena to global urban studies, a phenomenon attributed to the influence of a hegemonic Anglo-American academic complex. We seek to present a more nuanced account by considering scholarship on the “creative city” in a post-socialist context. A numerical analysis of English language publications confirms the lack of impact of scholarship from/on post-socialist areas, though we do identify literature which may be “theory exporting” and emphasize the temporal dimension of the development of scholarship. We then consider the interaction of three global mobilities to present a more nuanced account of this pattern – the “creative city” thesis as globally mobile urban policy, the neoliberalization of universities as a globally mobile restructuring of the context in which these inequalities in knowledge-production are produced, and urban studies theorizing itself as a set of globally mobile concepts and practices. We therefore explore the dynamic interaction of a particular urban phenomenon (“creative city” policy) with academic knowledge production. Adopting this perspective allows us to emphasize other factors such as path dependencies within post-socialist areas and to give due emphasis to agency within the region and how these interact with global processes of neoliberalizing academia

    Endothelial overexpression of LOX-1 increases plaque formation and promotes atherosclerosis in vivo

    Get PDF
    Aims Lectin-like oxLDL receptor-1 (LOX-1) mediates the uptake of oxidized low-density lipoprotein (oxLDL) in endothelial cells and macrophages. However, the different atherogenic potential of LOX-1-mediated endothelial and macrophage oxLDL uptake remains unclear. The present study was designed to investigate the in vivo role of endothelial LOX-1 in atherogenesis. Methods and results Endothelial-specific LOX-1 transgenic mice were generated using the Tie2 promoter (LOX-1TG). Oxidized low-density lipoprotein uptake was enhanced in cultured endothelial cells, but not in macrophages of LOX-1TG mice. Six-week-old male LOX-1TG and wild-type (WT) mice were fed a high-cholesterol diet (HCD) for 30 weeks. Increased reactive oxygen species production, impaired endothelial nitric oxide synthase activity and endothelial dysfunction were observed in LOX-1TG mice as compared with WT littermates. LOX-1 overexpression led to p38 phosphorylation, increased nuclear factor ÎșB activity and subsequent up-regulation of vascular cell adhesion molecule-1, thereby favouring macrophage accumulation and aortic fatty streaks. Consistently, HCD-fed double-mutant LOX-1TG/ApoE−/− displayed oxidative stress and vascular inflammation with higher aortic plaques than ApoE−/− controls. Finally, bone marrow transplantation experiments showed that endothelial LOX-1 was sufficient for atherosclerosis development in vivo. Conclusions Endothelial-specific LOX-1 overexpression enhanced aortic oxLDL levels, thereby favouring endothelial dysfunction, vascular inflammation and plaque formation. Thus, LOX-1 may serve as a novel therapeutic target for atherosclerosi

    Deletion of L-Selectin Increases Atherosclerosis Development in ApoE−/− Mice

    Get PDF
    Atherosclerosis is an inflammatory disease characterized by accumulation of leukocytes in the arterial intima. Members of the selectin family of adhesion molecules are important mediators of leukocyte extravasation. However, it is unclear whether L-selectin (L-sel) is involved in the pathogenesis of atherosclerosis. In the present study, mice deficient in L-selectin (L-sel−/−) animals were crossed with mice lacking Apolipoprotein E (ApoE−/−). The development of atherosclerosis was analyzed in double-knockout ApoE/L-sel (ApoE−/− L-sel−/−) mice and the corresponding ApoE−/− controls fed either a normal or a high cholesterol diet (HCD). After 6 weeks of HCD, aortic lesions were increased two-fold in ApoE−/− L-sel−/− mice as compared to ApoE−/− controls (2.46%±0.54% vs 1.28%±0.24% of total aortic area; p<0.05). Formation of atherosclerotic lesions was also enhanced in 6-month-old ApoE−/− L-sel−/− animals fed a normal diet (10.45%±2.58% vs 1.87%±0.37%; p<0.05). In contrast, after 12 weeks of HCD, there was no difference in atheroma formation between ApoE−/− L-sel−/− and ApoE−/− mice. Serum cholesterol levels remained unchanged by L-sel deletion. Atherosclerotic plaques did not exhibit any differences in cellular composition assessed by immunohistochemistry for CD68, CD3, CD4, and CD8 in ApoE−/− L-sel−/− as compared to ApoE−/− mice. Leukocyte rolling on lesions in the aorta was similar in ApoE−/− L-sel−/− and ApoE−/− animals. ApoE−/− L-sel−/− mice exhibited reduced size and cellularity of peripheral lymph nodes, increased size of spleen, and increased number of peripheral lymphocytes as compared to ApoE−/− controls. These data indicate that L-sel does not promote atherosclerotic lesion formation and suggest that it rather protects from early atherosclerosis

    2017 Update of ESC/EAS Task Force on practical clinical guidance for proprotein convertase subtilisin/kexin type 9 inhibition in patients with atherosclerotic cardiovascular disease or in familial hypercholesterolaemia

    Get PDF
    A correction has been published: European Heart Journal, Volume 39, Issue 22, 7 June 2018, Pages 2105Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017.info:eu-repo/semantics/publishedVersio
    • 

    corecore