600 research outputs found

    Chronic Intermittent Materno-Fetal Hyperoxygenation in Late Gestation May Improve on Hypoplastic Cardiovascular Structures Associated with Cardiac Malformations in Human Fetuses

    Get PDF
    Hypoplasia of cardiovascular structures is a common finding in fetuses with cardiac malformations. Materno-fetal hyperoxygenation (HO) during late gestation promotes venous return to the fetal heart. This analysis in human fetuses sought to define whether this “loading” effect might improve hypoplastic cardiovascular dimensions. Fifteen late-gestation fetuses presented with varying degrees of hypoplastic cardiovascular structures. In these cases, chronic intermittent materno-fetal HO was administered during periods ranging from 8 to 33 days. Cardiac measurements were taken before and at the end of treatment and translated into Z-scores as well as plotted on normal growth charts. During the treatment period, chronic intermittent materno-fetal HO was associated with improved dimensions of ≥1 hypoplastic cardiovascular structures in most fetuses. However, in some cases, the effect of HO was neutralized or impaired by the presence of ventricular septal defects as well as obstructions to ventricular filling or emptying. Chronic intermittent materno-fetal HO near term may be associated with improvements of hypoplastic cardiovascular dimensions in fetuses with a spectrum of cardiac malformations. This effect may facilitate postnatal treatment and improve prognosis in suitable cases

    VESTA - Very-High-Temperature Heat Aquifer Storage

    Get PDF
    Energy storage is one of the key challenges of the energy transition. Eight international partners from Germany, Switzerland and the USA address this challenge in the joint project VESTA. Goal of VESTA is the generic development and demonstration of high-temperature storage in the underground. Four pilot sites in the DACH region in various geologies and project phases allow feedback loops between generic scientific investigations and application of new geothermal technologies. Specifically, pilot sites that shall 1) demonstrate HT-ATES technology, 2) evaluate technical and non-technical barriers, 3) support development and implementation by providing techniques and optimized component design, and 4) support agencies with scientific and technical knowledge as a basis for advancing regulatory provisions. With this scientific program, VESTA shall form a technical-economic bases for future operational concepts

    Population Structure of Mycobacterium bovis in Germany: a Long-Term Study Using Whole-Genome Sequencing Combined with Conventional Molecular Typing Methods.

    Get PDF
    Mycobacterium bovis is the primary cause of bovine tuberculosis (bTB) and infects a wide range of domestic animal and wildlife species and humans. In Germany, bTB still emerges sporadically in cattle herds, free-ranging wildlife, diverse captive animal species, and humans. In order to understand the underlying population structure and estimate the population size fluctuation through time, we analyzed 131 M. bovis strains from animals (n?=?38) and humans (n?=?93) in Germany from 1999 to 2017 by whole-genome sequencing (WGS), mycobacterial interspersed repetitive-unit-variable-number tandem-repeat (MIRU-VNTR) typing, and spoligotyping. Based on WGS data analysis, 122 out of the 131 M. bovis strains were classified into 13 major clades, of which 6 contained strains from both human and animal cases and 7 only strains from human cases. Bayesian analyses suggest that the M. bovis population went through two sharp anticlimaxes, one in the middle of the 18th century and another one in the 1950s. WGS-based cluster analysis grouped 46 strains into 13 clusters ranging in size from 2 to 11 members and involving strains from distinct host types, e.g., only cattle and also mixed hosts. Animal strains of four clusters were obtained over a 9-year span, pointing toward autochthonous persistent bTB infection cycles. As expected, WGS had a higher discriminatory power than spoligotyping and MIRU-VNTR typing. In conclusion, our data confirm that WGS and suitable bioinformatics constitute the method of choice to implement prospective molecular epidemiological surveillance of M. bovis The population of M. bovis in Germany is diverse, with subtle, but existing, interactions between different host groups

    Towards standardisation:comparison of five whole genome sequencing (WGS) analysis pipelines for detection of epidemiologically linked tuberculosis cases

    Get PDF
    BackgroundWhole genome sequencing (WGS) is a reliable tool for studying tuberculosis (TB) transmission. WGS data are usually processed by custom-built analysis pipelines with little standardisation between them.AimTo compare the impact of variability of several WGS analysis pipelines used internationally to detect epidemiologically linked TB cases.MethodsFrom the Netherlands, 535 Mycobacterium tuberculosis complex (MTBC) strains from 2016 were included. Epidemiological information obtained from municipal health services was available for all mycobacterial interspersed repeat unit-variable number of tandem repeat (MIRU-VNTR) clustered cases. WGS data was analysed using five different pipelines: one core genome multilocus sequence typing (cgMLST) approach and four single nucleotide polymorphism (SNP)-based pipelines developed in Oxford, United Kingdom; Borstel, Germany; Bilthoven, the Netherlands and Copenhagen, Denmark. WGS clusters were defined using a maximum pairwise distance of 12 SNPs/alleles.ResultsThe cgMLST approach and Oxford pipeline clustered all epidemiologically linked cases, however, in the other three SNP-based pipelines one epidemiological link was missed due to insufficient coverage. In general, the genetic distances varied between pipelines, reflecting different clustering rates: the cgMLST approach clustered 92 cases, followed by 84, 83, 83 and 82 cases in the SNP-based pipelines from Copenhagen, Oxford, Borstel and Bilthoven respectively.ConclusionConcordance in ruling out epidemiological links was high between pipelines, which is an important step in the international validation of WGS data analysis. To increase accuracy in identifying TB transmission clusters, standardisation of crucial WGS criteria and creation of a reference database of representative MTBC sequences would be advisable

    Long-term and age-dependent restoration of visual function in a mouse model of CNGB3-associated achromatopsia following gene therapy

    Get PDF
    Mutations in the CNGB3 gene account for >50% of all known cases of achromatopsia. Although of early onset, its stationary character and the potential for rapid assessment of restoration of retinal function following therapy renders achromatopsia a very attractive candidate for gene therapy. Here we tested the efficacy of an rAAV2/8 vector containing a human cone arrestin promoter and a human CNGB3 cDNA in CNGB3 deficient mice. Following subretinal delivery of the vector, CNGB3 was detected in both M- and S-cones and resulted in increased levels of CNGA3, increased cone density and survival, improved cone outer segment structure and normal subcellular compartmentalization of cone opsins. Therapy also resulted in long-term improvement of retinal function, with restoration of cone ERG amplitudes of up to 90% of wild-type and a significant improvement in visual acuity. Remarkably, successful restoration of cone function was observed even when treatment was initiated at 6 months of age; however, restoration of normal visual acuity was only possible in younger animals (e.g. 2–4 weeks old). This study represents achievement of the most substantial restoration of visual function reported to date in an animal model of achromatopsia using a human gene construct, which has the potential to be utilized in clinical trials

    The Charge Form Factor of the Neutron at Low Momentum Transfer from the 2H(e,en)p^{2}\vec{\rm H}(\vec{\rm e},{\rm e}'{\rm n}){\rm p} Reaction

    Full text link
    We report new measurements of the neutron charge form factor at low momentum transfer using quasielastic electrodisintegration of the deuteron. Longitudinally polarized electrons at an energy of 850 MeV were scattered from an isotopically pure, highly polarized deuterium gas target. The scattered electrons and coincident neutrons were measured by the Bates Large Acceptance Spectrometer Toroid (BLAST) detector. The neutron form factor ratio GEn/GMnG^{n}_{E}/G^{n}_{M} was extracted from the beam-target vector asymmetry AedVA_{ed}^{V} at four-momentum transfers Q2=0.14Q^{2}=0.14, 0.20, 0.29 and 0.42 (GeV/c)2^{2}.Comment: 5 pages, 3 figures, submitted to Phys. Rev. Let

    An applied ecology of fear framework: linking theory to conservation practice

    Get PDF
    Research on the ecology of fear has highlighted the importance of perceived risk from predators and humans in shaping animal behavior and physiology, with potential demographic and ecosystem-wide consequences. Despite recent conceptual advances and potential management implications of the ecology of fear, theory and conservation practices have rarely been linked. Many challenges in animal conservation may be alleviated by actively harnessing or compensating for risk perception and risk avoidance behavior in wild animal populations. Integration of the ecology of fear into conservation and management practice can contribute to the recovery of threatened populations, human–wildlife conflict mitigation, invasive species management, maintenance of sustainable harvest and species reintroduction plans. Here, we present an applied framework that links conservation interventions to desired outcomes by manipulating ecology of fear dynamics. We discuss how to reduce or amplify fear in wild animals by manipulating habitat structure, sensory stimuli, animal experience (previous exposure to risk) and food safety trade-offs to achieve management objectives. Changing the optimal decision-making of individuals in managed populations can then further conservation goals by shaping the spatiotemporal distribution of animals, changing predation rates and altering risk effects that scale up to demographic consequences. We also outline future directions for applied research on fear ecology that will better inform conservation practices. Our framework can help scientists and practitioners anticipate and mitigate unintended consequences of management decisions, and highlight new levers for multi-species conservation strategies that promote human–wildlife coexistence
    corecore