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Abstract 28 

Mycobacterium bovis (Mbov) is the primary cause of bovine tuberculosis (bTB), and 29 

also infecting a wide range of domestic animal and wildlife species and humans. In 30 

Germany, bTB still emerges sporadically in cattle herds, free-ranging wildlife, diverse 31 

captive animal species, and humans. In order to understand the underlying population 32 

structure and estimate the population size fluctuation through time, we analyzed 131 33 

Mbov strains from animals (n = 38) and humans (n = 93) in Germany from 1999 to 34 

2017 by whole genome sequencing (WGS), MIRU-VNTR typing, and spoligotyping. 35 

Based on WGS data analysis, 122 out of the 131 Mbov strains were classified into 13 36 

major clades, six contained strains from both human and animal cases, and seven only 37 

from human cases. Bayesian analyses suggest that the Mbov population went through 38 

two sharp anticlimaxes, one in the middle of the 18th century and another one in the 39 

1950’s. WGS based cluster analysis grouped 46 strains into 13 clusters ranging in size 40 

from 2-11 members and involving strains from distinct host types, e.g. only cattle, and 41 

also mixed hosts. Animal strains of four clusters were obtained over a nine-year time 42 

span, pointing towards autochthonous persistent bTB infection cycles. As expected, 43 

WGS had a higher discriminatory power than spoligotyping and MIRU-VNTR typing. In 44 

conclusion, our data confirm that WGS and suitable bioinformatics is the method of 45 

choice to implement a prospective molecular epidemiological surveillance of Mbov. 46 

The population of Mbov in Germany is diverse, with subtle, but existing interactions 47 

between different host groups.  48 

 49 

 50 

 51 

 52 

Introduction 53 



Tuberculosis (TB) is one of the high priority infectious diseases affecting humans and 54 

animals worldwide (1, 2), and the leading cause of death by a single infectious agent 55 

in humans (2). Causative agents for TB are the members of the Mycobacterium 56 

tuberculosis complex (MTBC), namely M. tuberculosis, M. africanum, M. bovis, M. 57 

caprae, M. microti, and M. pinnipedii. In addition, M. canettii, M. mungi, and M. orygis 58 

have been proposed as separate ecotypes. However, their taxonomic classification is 59 

still under debate (3). 60 

M. bovis (Mbov) is the primary cause of bovine TB (bTB) but also affects a wide range 61 

of other domestic animal and wildlife species and even humans (4, 5, 6, 7). After time 62 

periods of high prevalence of bTB infection in cattle until the second half of the 20 th 63 

century, Germany has reached the status of being officially free of bTB. Since July, 1st, 64 

1996 (Decision 97/76/EC), 99.9 percent of the cattle herds remained officially free of 65 

bTB infection and disease for at least six consecutive years (Article 2(d) of Council 66 

Directive 64/432/EEC, 8, 9, 10). However, bTB is still emerging sporadically in cattle 67 

herds (11), free-ranging wildlife, captive animal species (12), and humans (13). 68 

Confirmed animal bTB cases are notified through an electronic national disease 69 

information system (TSN) and published annually (14). From January 1999 to 70 

December 2015, a total of 214 bTB outbreaks in cattle herds were notified in Germany, 71 

with about half of the cases caused by either M. bovis or M. caprae. In general, M. 72 

caprae is reported mainly in middle European countries with sporadic cases also in 73 

Asia and Peru (15,16), with cattle and wildlife cases in Germany restricted to an area 74 

at the German-Austrian border (17,18). M. caprae was therefore not included in this 75 

study. According to the European Food Safety Authority (EFSA) 2017, from 2013-76 

2017, 43-56 bTB cases in humans were diagnosed annually (13). Notification rates for 77 

bTB ranged from 0.05- to 0.07 per 100,000 population. Mbov and the closely related 78 



M. caprae make up about 1% of all human TB cases (5,486 cases in 2017, more than 79 

six per 100.000 population) (13, 19).  80 

As disease transmission dynamics of Mbov within and between host groups are only 81 

partially understood (20), molecular typing methods could offer insights into 82 

transmission routes and inform pathogen surveillance (21, 22, 23). Classical 83 

genotyping methods including spoligotyping, restriction fragment length polymorphism 84 

(RFLP) and mycobacterial interspersed repetitive unit variable number of tandem 85 

repeat (MIRU-VNTR) detection allow analyzing outbreaks, assessing population 86 

structures, and performing longitudinal molecular epidemiological studies (24, 25, 26, 87 

27, 28, 29, 30, 31).  88 

Spoligotyping (25) is based on the analysis of CRISPR-CAS spacer sequences located 89 

in a genomic region prone to convergent evolution (21), possibly leading to uncertainty 90 

of strain relatedness. Spoligotyping patterns submitted to international databases 91 

receive unique identifiers: SITVIT (32, 33, 34) allowing for MTBC isolates from any 92 

host, and mbovis.org accepting MTBC strains from animals only (35). As of October 93 

2018, 39,609 MTBC spoligotypes have been collected in the SITVIT database from 94 

more than 121 countries (32). At mbovis.org, 2,117 patterns are available (last update 95 

April 2020). RFLP is a method with high potential for discrimination for M. tuberculosis 96 

but not Mbov strains due to the small number of analyzed insertion element copies 97 

present in the respective genomes. MIRU-VNTR typing possesses a higher 98 

discriminatory power, allowing automated high throughput typing and web-based 99 

translation into a digit code identifier (29, 30, 36, 37). The method has high potential to 100 

define clusters of related strains, but cannot differentiate between closely related 101 

strains within outbreaks (38).  102 



Next generation sequencing (NGS) allows for analysis of the nearly-complete genome 103 

of a pathogen by whole genome sequencing (WGS), providing deeper insights into the 104 

population structure, pathogen evolution, transmission chains, and biology of bacteria 105 

(38, 39, 40, 41). WGS analysis facilitates the detection of recent transmission chains 106 

and monitoring re-emerging of strains after years of non-detection (42, 43, 44, 45). 107 

In this study, we used WGS, spoligotyping and MIRU-VNTR to determine the diversity 108 

of Mbov strains isolated from animals and humans in Germany and define possible 109 

transmission chains within and between different host populations over a 19-year 110 

period (1999-2017). Using Bayesian analyses, we sought insights into the dynamics of 111 

strain diversity over the last 800 years in Germany. 112 

 113 

Materials and Methods 114 

 115 

Strain selection and DNA extraction 116 

In total, 131 Mbov strains were available for WGS including the reference strain Mbov 117 

BCG (DSM 43990 / ATCC 27289), with 38 strains from the Friedrich-Loeffler-Institut 118 

(FLI), Federal Institute for Animal Health, and 93 strains from the National Reference 119 

Center (NRC) for Mycobacteria in Borstel, Germany (supplementary table S1). From 120 

January 1999 to December 2015 (the study period), a total of 214 bTB outbreaks in 121 

cattle herds were notified in Germany by the electronic system implemented by the FLI 122 

to monitor bTB outbreaks, with about half of the cases in cattle caused by M. bovis. 123 

Mbov strains from ten cattle bTB outbreaks, from five other domestic animal species , 124 

14 zoo animals, and wild boars were analyzed (supplementary table S2), spanning the 125 

time period from 1999–2015, and covering different regions of the country, including 126 

the known hot spot regions in the north and south. At the NRC in Borstel, all German 127 



M. bovis strains cultured and archived from 2000 to 2017 were included. The NRC 128 

receives samples from all districts in Germany, and while it is not the only laboratory 129 

offering specialist mycobacterial diagnostics in Germany, it receives an estimated 50% 130 

of all MTBC isolates. At both institutions, strains were cultured according to standard 131 

procedures (46, 47, 48, 49), and genomic DNA was extracted using the High Pure PCR 132 

Template Preparation kit (Roche Life Science; FLI) and with the 133 

cetyltrimethylammonium bromide (CTAB) procedure (NRC), respectively (50).  134 

 135 

Classical genotyping 136 

Spoligotyping of animal strains was performed using a microarray format (Alere 137 

Technologies, Jena, Germany) (51). Binary codes were automatically compared with 138 

data available through SITVIT and mbovis.org to identify concordant species and 139 

lineages. For human strains, the conventional spoligotyping method was used (25). 140 

MIRU-VNTR-typing of the strains isolated from animals was performed using 141 

conventional PCR and agarose gel electrophoresis (27, 29, 52).  For human strains, 142 

the automated high-throughput method was used (29). VNTR copy numbers were 143 

assessed according to allele calling tables (www.miru-vntrplus.org, EU Reference 144 

Laboratory for bovine Tuberculosis, www.visavet.es). The discriminatory power of the 145 

method was calculated according to Hunter and Gaston (53); (supplementary tables 3 146 

and 4). 147 

 148 

Whole genome sequencing and data analysis 149 

Libraries for WGS were prepared from genomic DNA with a modified Illumina Nextera 150 

protocol (54) and run on the Illumina NextSeq NGS platform (Illumina, San Diego, CA, 151 

USA). We employed the MTBseq pipeline with default parameters for variant detection 152 

and a joint analysis (55), employing a threshold of 12 SNPs for cluster detection (56). 153 



As deduced from the pairwise SNP distances distribution, we used a cutoff of 350 154 

SNPs to detect major groups (figure 2). For all sequenced strains, mean coverage 155 

depth was at least 50-fold, and at least 95% of the reference genome fulfilled the 156 

MTBseq thresholds for variant detection. From the aligned sequences of concatenated 157 

SNP positions produced by MTBseq, we calculated a maximum likelihood tree with 158 

FastTree (57) with a general time reversible (GTR) substitution model, 1,000 159 

resamples and Gamma20 likelihood optimization to account for rate heterogeneity 160 

among sites. The consensus tree was rooted with the “midpoint root” option in FigTree 161 

(http://tree.bio.ed.ac.uk/software/figtree), and nodes were arranged in increasing 162 

order. The resulting tree was annotated with the EvolView software (58). Additionally, 163 

we built maximum parsimony trees with the software BioNumerics version 7.5 (Applied 164 

Maths, Gent, Belgium) with default settings. 165 

For the coalescent-based analyses, evolutionary rates and tree topologies were 166 

analyzed using the general time-reversible (GTR) and Hasegawa-Kishino-Yano (HKY) 167 

substitution models with gamma distributed among-site rate variation with four rate 168 

categories (Γ4). The substitution rate was estimated by plotting a regression line that 169 

depicts for the sole WGS clusters, in a pairwise manner, the relationship between the 170 

elapsed time and the accumulated number of SNP’s. Under this model, the slope 171 

corresponds to the mutation rate. We tested both a strict molecular clock (which 172 

assumes the same evolutionary rates for all branches in the tree) and a relaxed clock 173 

that allows different rates among branches. Constant-size, exponential and Bayesian 174 

skyline plot models, based on a general, non-parametric prior that enforces no 175 

particular demographic history were used in BEAST v1.10.4 (59). For each model, two 176 

independent chains were conducted for 200 million generations and convergence was 177 

assessed by checking ESS values for key parameters using TRACER V1.7.1 (60). We 178 

used TRACER V1.7.1 to calculate the log10 Bayes factors in order to compare the 179 



models after a burn-in of 10% of the chain. Bayes factors represent the ratio of the 180 

marginal likelihood of the models being compared. Approximate marginal likelihoods 181 

for each coalescent model were calculated via importance sampling (1,000 bootstraps) 182 

using the harmonic mean of the sampled likelihoods. A ratio between 3 and 10 183 

indicates moderate support that one model better fits the data than another, whereas 184 

values greater than 10 indicate strong support. For correlation with known clonal 185 

complexes, we selected 33 strains representing the known clades contained in a recent 186 

publication (61), and performed a joint analysis as described previously. 187 

 188 

Data availability 189 

All WGS data was submitted to the EMBL-EBI ENA SRA archive (supplementary table 190 

S1). 191 

 192 

Ethics statement 193 

Ethical approval was not sought, as no patient data was used. 194 

 195 

Results 196 

In total, 131 Mbov strains, 93 of human and 38 of animal origin (supplementary table 197 

S1) isolated in Germany from 1999–2017, including one M. bovis BCG reference 198 

strain, were investigated by spoligotyping, MIRU-VNTR-typing, and WGS. WGS data 199 

analysis revealed 12,726 variable SNP positions among the genomes analyzed that 200 

were used for the calculation of a phylogenetic tree (figure 1). Interestingly, the strain 201 

mbov-49 was clearly separated from the rest of the study collection. This strain has 202 



been isolated at the FLI in 2000 from a Nilgau antelope (Boselaphus tragocamelus), 203 

which died in a German zoo, and found to be not intrinsically pyrazinamide resistant 204 

(62). 205 

Overall, the median pairwise distance in distinct SNP positions of the 131 strains was 206 

516 SNPs, and distinct peaks emerged in the frequency distribution between 0-30, 70-207 

350, 370-620, and 780-840 distinct SNPs, agreeing with the groups of related strains 208 

found by cluster detection with a threshold of 12, 30, and 350 distinct SNPs (d12, d30, 209 

d350) between nearest group members (figure 1, figure 2). Using the d350 threshold 210 

to group strains, we found 13 cladistic groups containing 122/131 strains ranging in 211 

size from 2-35 members, with on average eight years (2-18) between the earliest and 212 

latest year of isolation.  213 

Six of the d350 groups contained both human and animal cases, and seven only 214 

human cases. When comparing d350 groups with the known clonal complexes African 215 

1 and 2 (Af1, Af2), European 1 and 2 (Eu1, Eu2), as well as newly determined Unknown 216 

1-8 (61), we could correlate clonal complexes Af1, Eu1, Eu2, and Unknown2 with d350 217 

groups 08, 07, 06, and 13 (supplementary figure S1, supplementary table S6). For 218 

clonal complexes Af2, Unknown1, and Unknown7, we found only one corresponding 219 

strain in our collection (mbov-118, mbov-49, mbov-119). Interestingly, three d350 220 

groups (10, 11, 12) were attributed to clonal complex Unknown3, and four d350 groups 221 

(01, 02, 03, 04) to clonal complex Unknown4. We found no representatives of 222 

complexes Unknown5 and Unknown6 in our study, as well as correlates of d350 223 

groups 05 and 09 among the collection of known clonal complexes. 224 

 225 

Putative transmission clusters 226 



We used a threshold of at most 12 distinct SNP positions to the nearest group member 227 

as indication for possible recent transmission (54), which yielded 13 d12 clusters of 228 

altogether 46 strains (figure 1, figure 3, table 1). The d12 clusters ranged in size from 229 

2-11 members, spanned up to 15 years and involved distinct host types, with d12 230 

clusters 5 and 12 only comprising cattle hosts, clusters 4, 7, 11, and 13 only human 231 

hosts, and the rest mixed hosts (table 1). In total, 32 of the 38 animal strains (the pair 232 

of Mbov BCG in d12 cluster 13 not counted) were grouped into WGS d12 clusters. In 233 

four of these clusters, animal strains were recovered more than nine years apart, 234 

pointing towards autochthonous persistent bTB infection cycles. In contrast, only 12 235 

out of the 93 human strains were grouped into d12 clusters, with nine human strains 236 

forming four WGS d12 clusters of two and three members, respectively (table 1). The 237 

members of these groups were isolated within at most two years from each other. 238 

Overall, we found one cluster (cluster 8) with a putative transmission from cattle to 239 

humans with respective strains separated by two SNPs, and one cluster (cluster 6) of 240 

raccoon and human strains separated by 12 SNPs. 241 

As the frequency distribution of pairwise SNP distances featured a peak between 0-30 242 

SNPs (figure 2), we also clustered strains with a threshold of 30 SNPs. This yielded 243 

two new clusters of related strains with two members each, an additional member of 244 

d12 cluster 13, and d12 clusters 2 and 8 were joined together (figure 1). 245 

 246 

Comparison with classical genotyping 247 

The 131 strains were differentiated into 45 known spoligotypes and 11 spoligotypes 248 

not contained in the established databases (supplementary tables S1 and S5). Five or 249 

more strains each fell into four known spoligotypes:, SB 120/IT0482 (35 strains), SB 250 



121/IT0481 (13 strains), and SB 989/IT1118 (12 strains), SB 288/IT685 (5 strains). Of 251 

these, SB 120 and SB 121 have been reported as predominant spoligotypes circulating 252 

among animals around the world (63). Strains of these spoligotypes were present in 253 

different branches of the constructed phylogenetic tree and in different MIRU-VNTR 254 

and d12 clusters (figure 1).  255 

Comparing the composition of the d350 groups in terms of the respective spoligotypes 256 

(figure 1), we found correlations with the well-established clonal complexes1 and 2 and 257 

Af 1 and 2, as well as with the newly determined complexes named unknown 1 – 8(61; 258 

supplementary table S7). For example, SB0120 found in d350 groups 01, 02, 04, 05, 259 

10, and 13 was detected in complexes Unknown 2–5. This spoligotype has been 260 

reported as predominant circulating among animals around the world (63). Seven 261 

spoligotypes present in d350 groups 01, 02, 03, and 04 were reported for complex 262 

Unknown4 (61). The 15 spoligotyes found for d350 group 06 corresponded to those 263 

for complex Eu2, and the nine spoligotypes present in d350 groups 10, 11 and 12 were 264 

found in clade Unknown3 (61). The spoligotype SB0989 found in d350 group 09 was 265 

reported for singletons not contained in a complex (61).  266 

MIRU-VNTR analysis yielded 92 distinct patterns with 21 strain clusters ranging from 267 

two to seven members comprising altogether 62 strains. Using 121 supposedly 268 

unrelated strains, the discriminatory power index (HGDI; 51) of each of the 24+1-locus 269 

MIRU-VNTR loci was determined finding allelic heterogeneity mainly restricted to 2-4 270 

repeat copies (supplementary table S3). Allele heterogeneity of > 0.5 was found for the 271 

loci VNTR 2163a, 2163b, 2165, 2461 and 4052 (supplementary table S4). Overall, 272 

MIRU-VNTR types correlated well with both the phylogenetic tree and the d12 clusters. 273 

However, 21 strains grouped by MIRU-VNTR were not clustered by d12 analysis, and 274 



four d12 clusters encompassed strains with different MIRU-VNTR patterns, with four 275 

distinct loci in one, and one distinct locus in three of these cases (figure 1, figure 3). 276 

 277 

Mutation rate estimation and demographic inference 278 

The geographically widespread and phylogenetically diverse nature of our strain 279 

collection did not allow implementing a Bayesian tip-dating approach. We therefore 280 

focused on the 13 d12 clusters where the measurably evolving dimension of Mbov 281 

could be captured to infer a realistic estimation of the mutation rate. A positive 282 

correlation (r² = 0.682) was found between the time elapsed between two strains and 283 

the number of accumulated SNPs (figure 4). The slope was close to 1, corresponding 284 

to the acquisition of one SNP every year between two strains and translating to a 285 

mutation rate of 1.14 x 10-7 substitutions/nucleotide/year. 286 

To estimate the effective population size fluctuation through time, three demographic 287 

models were compared and the best fitting evolutionary model was obtained under the 288 

Bayesian skyline model with a relaxed clock (figure 4). The relaxed clock model 289 

outperforms the constant clock model (BF = 40) and the Bayesian skyline was favored 290 

to its closest model, constant size (BF = 14). The TMRCA (TIME to Most Recent 291 

Common Ancestor) corresponding to our Mbov strain collection dated back some 950 292 

years ago (95% HPD [highest posterior density] interval, 836-1062). According to the 293 

coalescent-based demographic reconstructions, the German Mbov population went 294 

through three successive expansions, a first twentyfold increase in the late middle age, 295 

followed by two mild expansions in the middle of 18th century and the early 20th century 296 

(figure 4).  297 

 298 



 299 

Discussion 300 

This investigation provides insights into population structure, persistence and 301 

population size fluctuation of Mbov strains in Germany over time and the complex 302 

interrelations in a multi-host pathogen system. In the context of a country declared 303 

officially free of bTB for more than two decades, special consideration was given to 304 

strain persistence attempting to understand recurrent outbreaks and possible links to 305 

human cases, while other publications have mainly concentrated on microevolution of 306 

strains in the context of geospatial spreading and transmission dynamics between 307 

animal reservoirs (64, 65).  308 

 309 

The main limitation of our study is that, due to practical limitations related to access to 310 

strains, we were not able to collect a fully comprehensive set of Mbov strains from 311 

human and animal cases in Germany. Additionally, due to the restrictions set by data 312 

protection regulations, the available metadata for the strains was limited to year and 313 

host of isolation. Regrettably, this does not allow an epidemiological analysis of the 314 

WGS d12 and d30 clusters. Still, our collection covers a time span from 1999-2017 315 

and diverse host species. While we took care to identify and remove duplicate strains 316 

from the same host, we cannot fully exclude this possibility for human strains.  317 

 318 

We successfully performed WGS for a collection of 93 human and 38 animal Mbov 319 

strains, isolated in Germany from 1999–2017. The pairwise distance distribution and 320 

the reconstructed phylogenetic tree indicate the presence of 13 d350 groups within the 321 

study population. These encompassed the majority of strains (122/131) and represents 322 

a snapshot of Mbov sublineages historically spreading in Germany. Correlating our 323 



phylogeny and detected groups with described clonal complexes revealed that our 324 

collection contains representatives of the well-known Mbov complexes Af1, Af2, Eu1, 325 

and Eu2, as well as of additional groups defined recently (61). Interestingly, there are 326 

at most two strains of complexes Af1, Af2, and Eu1 in our study, and we found no 327 

representatives of complexes Unknown5 and Unknown6, or correlating complexes for 328 

d350 groups 05 and 09. This might indicate a geographically uneven distribution of 329 

subgroups and that the Mbov phylogeny needs to be refined by WGS-based studies 330 

with larger, geographically diverse collections.   331 

 332 

Using a threshold of 12 distinct SNP positions to identify strains possibly involved in 333 

recent transmission events (56), we found 32 out of the 38 animal strains and 12 out 334 

of the 93 human strains grouped into 13 d12 clusters. In four of these clusters, animal 335 

strains were recovered more than nine years apart, pointing towards autochthonous 336 

persistent bTB infection cycles. This is further supported by the combination of d12 337 

clusters 2 and 8 into a joint group when clustering with a threshold of 30 SNPs, with 338 

the phylogenetic analysis and the number of distinct SNP positions suggesting a 339 

relatively recent common source for both clusters. Human strains within clusters were 340 

isolated within at most one-year difference and with one sole exception had at most 341 

one SNP distance, possibly indicating direct transmission. 342 

Despite the imbalance of Mbov strains included from humans and animals, there seem 343 

to be distinct infection dynamics for animals and humans. For cattle and other animals, 344 

the majority of strains were found within d12 clusters and several strains were 345 

persistently spreading over up to 15 years, pointing towards potential reservoirs of 346 

these strains, for example in the German wildlife population. The mostly un-clustered 347 

human cases might represent progression to active disease from latently infected 348 

individuals as indicated previously (17). In general, human mobility is also higher 349 



compared to cattle and wild animals. Here, patients having contacts to sources of 350 

infection outside Germany may contribute to the detected high diversity of strains 351 

isolated from human patients. As reported in 2003 (17), the majority of patients with 352 

Mbov disease in Germany, was over 60 years of age suggesting that they might have 353 

acquired the infection at a young age when the prevalence of bTB in cattle in Germany 354 

was much higher than today. Unfortunately, Mbov strains isolated from cattle before 355 

1999 were not available. 356 

 357 

Two of the d12 clusters (6 and 8) contained both animal and human strains, indicating 358 

possible recent transmission between humans and animals. The detection of only one 359 

human strain contained in a d12 cluster with cattle strains may indicate that the overall 360 

risk of human infection with Mbov is low with respect to consumption of food (milk, 361 

meat) or direct contact to indigenous cattle, while transmission can happen in 362 

outbreaks settings.  363 

The study results show that WGS is superior in unequivocally detecting genetic 364 

relationship between strains and clarify transmission routes compared to spoligotyping 365 

and MIRU-VNTR. While spoligotyping provides some information of strain relatedness, 366 

our results demonstrate that it cannot reliably establish clusters of related strains. 367 

MIRU-VNTR typing results correlated well with WGS data. However, MIRU-VNTR 368 

cannot accurately trace gradual evolution within a transmission cluster. Twenty-one 369 

strains clustered by MIRU-VNTR were not clustered by d12 analysis, and four d12 370 

clusters encompassed strains with distinct MIRU-VNTR patterns.  371 

We estimated a mutation rate of 1.14 x 10-7 substitutions/nucleotide/year for Mbov. A 372 

recent publication on the molecular clock with over 6,000 samples representing the 373 

global diversity and covering different epidemiological settings estimated a clock rate 374 



between 1x10-8 and 5x10-7, while stating that sampling times below 15-20 years could 375 

be insufficient to calibrate a clock rate (67). In another study dealing explicitly with 376 

globally distributed Mbov strains, the clock rate was estimated between 6.66x10-8 and 377 

1.26x10-7 (61). Our collection of 131 samples of German Mbov strains spans a time 378 

period of 19 years, maybe limiting our ability to estimate the clock rate. However, the 379 

rate we inferred is in full agreement with estimates published for M. tuberculosis 380 

outbreaks in Germany (37) and Eurasia (66). Estimates of the effective population size 381 

fluctuation through time according to coalescent-based demographic reconstructions 382 

suggested that, the German Mbov population went through three successive 383 

expansions, a first twentyfold increase in the late middle age, followed by two mild 384 

expansions in the mid 18th century and the early 20th century (figure 4). These 385 

expansions might be due to increasing growth and movement of human and cattle 386 

populations as well as increasing growth of human communities and of intensive 387 

animal husbandry with time. The population size sharply declined after the 1970’s, 388 

underlining the absence of ongoing epidemics in Germany and confirming the bTB free 389 

status of the country. Indirectly supporting the data, the Bayesian skyline detected an 390 

anticlimax in the 1740 to 1760 period. This observation coincides with the cattle plague 391 

outbreak (RPV virus) that severely impacted the European stocks during that period 392 

(68). 393 

In conclusion, in this study for the first time the persistence of infectious cycles of Mbov 394 

in the officially bTB free country of Germany over more than ten years has been clearly 395 

demonstrated pointing towards the challenges controlling this pathogen. As 396 

exemplified here, WGS is definitively the method of choice for establishment of an 397 

integrated molecular surveillance of Mbov as well as for outbreak investigations.  398 

 399 
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 671 

Figures 672 

 673 

Figure 1: Maximum likelihood tree of 131 Mbov strains built from 12,726 SNP 674 

positions, annotated with host organism, isolation year, WGS cluster, MIRU-VNTR 675 

types, and spoligotypes from the SITVIT (IT) and mbovis.org (SB) databases. Scale 676 



bar indicates the likelihood of per-site substitution and therefore reflects a distance of 677 

127 SNPs baring reverse mutations. Circles on nodes indicate resampling support of 678 

at least 90% (green circles) or at least 70% (black circles). 679 

 680 

Figure 2: Pairwise distance distribution of SNP distances between all sequenced 681 

strains (blue) and within WGS d350 groups (red), d30 clusters (purple), and d12 682 

clusters (yellow), with the color indicator for the respective lower thresholds 683 

superimposed. The y-axis indicates the total number of pairwise distances and x-axis 684 

the number of distinct SNPs. 685 

 686 

Figure 3: A Maximum parsimony trees for the 13 WGS clusters, annotated with host 687 

of isolation. Numbers on branches indicate number of distinct SNPs, distances of 1 are 688 

not indicated. B Maximum parsimony trees for the 13 WGS clusters, annotated with 689 

MIRU-VNTR types. Numbers on branches indicate number of distinct SNPs, distances 690 

of 1 are not indicated.  691 

 692 

Figure 4: Bayesian skyline plot showing the effective population size of the German 693 

Mbov sample through time, estimated from the SNP matrix. According to the 694 

coalescent-based approach, the Mbov population went through three successive 695 

expansions followed by a final decline. Plot-in-plot Root-to-tip genetic distances 696 

plotted against sampling dates based on 13 WGS clusters. The figure illustrates a 697 

positive correlation (r² = 0.682) of divergence with sampling date and confirms that 698 

Mbov is a measurably evolving population (MEP).  699 



 700 

 701 

 702 

Tables 703 

Table 1: Synopsis of the 13 d12 clusters as deduced from the maximum likelihood tree 704 

built from 131 Mbov strains. To the clusters, the number of strains, the years of 705 

isolation, spanning time, the maximum distance as indicated by the number of SNPs 706 

and the host organisms are annotated. 707 
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