6 research outputs found

    Deep feature meta-learners ensemble models for Covid-19 CT scan classification

    Get PDF
    The infectious nature of the COVID-19 virus demands rapid detection to quarantine the infected to isolate the spread or provide the necessary treatment if required. Analysis of COVID-19-infected chest Computed Tomography Scans (CT scans) have been shown to be successful in detecting the disease, making them essential in radiology assessment and screening of infected patients. Single-model Deep CNN models have been used to extract complex information pertaining to the CT scan images, allowing for in-depth analysis and thereby aiding in the diagnosis of the infection by automatically classifying the chest CT scan images as infected or non-infected. The feature maps obtained from the final convolution layer of the Deep CNN models contain complex and positional encoding of the images’ features. The ensemble modeling of these Deep CNN models has been proved to improve the classification performance, when compared to a single model, by lowering the generalization error, as the ensemble can meta-learn from a broader set of independent features. This paper presents Deep Ensemble Learning models to synergize Deep CNN models by combining these feature maps to create deep feature vectors or deep feature maps that are then trained on meta shallow and deep learners to improve the classification. This paper also proposes a novel Attentive Ensemble Model that utilizes an attention mechanism to focus on significant feature embeddings while learning the Ensemble feature vector. The proposed Attentive Ensemble model provided better generalization, outperforming Deep CNN models and conventional Ensemble learning techniques, as well as Shallow and Deep meta-learning Ensemble CNNs models. Radiologists can use the presented automatic Ensemble classification models to assist identify infected chest CT scans and save lives

    Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88

    Get PDF
    The filamentous fungus Aspergillus niger is widely exploited by the fermentation industry for the production of enzymes and organic acids, particularly citric acid. We sequenced the 33.9-megabase genome of A. niger CBS 513.88, the ancestor of currently used enzyme production strains. A high level of synteny was observed with other aspergilli sequenced. Strong function predictions were made for 6,506 of the 14,165 open reading frames identified. A detailed description of the components of the protein secretion pathway was made and striking differences in the hydrolytic enzyme spectra of aspergilli were observed. A reconstructed metabolic network comprising 1,069 unique reactions illustrates the versatile metabolism of A. niger. Noteworthy is the large number of major facilitator superfamily transporters and fungal zinc binuclear cluster transcription factors, and the presence of putative gene clusters for fumonisin and ochratoxin A synthesis

    Deep Feature Meta-Learners Ensemble Models for COVID-19 CT Scan Classification

    No full text
    The infectious nature of the COVID-19 virus demands rapid detection to quarantine the infected to isolate the spread or provide the necessary treatment if required. Analysis of COVID-19-infected chest Computed Tomography Scans (CT scans) have been shown to be successful in detecting the disease, making them essential in radiology assessment and screening of infected patients. Single-model Deep CNN models have been used to extract complex information pertaining to the CT scan images, allowing for in-depth analysis and thereby aiding in the diagnosis of the infection by automatically classifying the chest CT scan images as infected or non-infected. The feature maps obtained from the final convolution layer of the Deep CNN models contain complex and positional encoding of the images’ features. The ensemble modeling of these Deep CNN models has been proved to improve the classification performance, when compared to a single model, by lowering the generalization error, as the ensemble can meta-learn from a broader set of independent features. This paper presents Deep Ensemble Learning models to synergize Deep CNN models by combining these feature maps to create deep feature vectors or deep feature maps that are then trained on meta shallow and deep learners to improve the classification. This paper also proposes a novel Attentive Ensemble Model that utilizes an attention mechanism to focus on significant feature embeddings while learning the Ensemble feature vector. The proposed Attentive Ensemble model provided better generalization, outperforming Deep CNN models and conventional Ensemble learning techniques, as well as Shallow and Deep meta-learning Ensemble CNNs models. Radiologists can use the presented automatic Ensemble classification models to assist identify infected chest CT scans and save lives

    The 2008 update of the Aspergillus nidulans genome annotation : a community effort

    No full text
    The identification and annotation of protein-coding genes is one of the primary goals of whole-genome sequencing projects, and the accuracy of predicting the primary protein products of gene expression is vital to the interpretation of the available data and the design of downstream functional applications. Nevertheless, the comprehensive annotation of eukaryotic genomes remains a considerable challenge. Many genomes submitted to public databases, including those of major model organisms, contain significant numbers of wrong and incomplete gene predictions. We present a community-based reannotation of the Aspergillus nidulans genome with the primary goal of increasing the number and quality of protein functional assignments through the careful review of experts in the field of fungal biology

    Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88

    Get PDF
    The filamentous fungus Aspergillus niger is widely exploited by the fermentation industry for the production of enzymes and organic acids, particularly citric acid. We sequenced the 33.9-megabase genome of A. niger CBS 513.88, the ancestor of currently used enzyme production strains. A high level of synteny was observed with other aspergilli sequenced. Strong function predictions were made for 6,506 of the 14,165 open reading frames identified. A detailed description of the components of the protein secretion pathway was made and striking differences in the hydrolytic enzyme spectra of aspergilli were observed. A reconstructed metabolic network comprising 1,069 unique reactions illustrates the versatile metabolism of A. niger. Noteworthy is the large number of major facilitator superfamily transporters and fungal zinc binuclear cluster transcription factors, and the presence of putative gene clusters for fumonisin and ochratoxin A synthesis
    corecore