5,155 research outputs found

    Efficient photon number detection with silicon avalanche photodiodes

    Full text link
    We demonstrate an efficient photon number detector for visible wavelengths using a silicon avalanche photodiode. Under subnanosecond gating, the device is able to resolve up to four photons in an incident optical pulse. The detection efficiency at 600 nm is measured to be 73.8%, corresponding to an avalanche probability of 91.1% of the absorbed photons, with a dark count probability below 1.1x10^{-6} per gate. With this performance and operation close to room temperature, fast-gated silicon avalanche photodiodes are ideal for optical quantum information processing that requires single-shot photon number detection

    Probing higher order correlations of the photon field with photon number resolving avalanche photodiodes

    Full text link
    We demonstrate the use of two high speed avalanche photodiodes in exploring higher order photon correlations. By employing the photon number resolving capability of the photodiodes the response to higher order photon coincidences can be measured. As an example we show experimentally the sensitivity to higher order correlations for three types of photon sources with distinct photon statistics. This higher order correlation technique could be used as a low cost and compact tool for quantifying the degree of correlation of photon sources employed in quantum information science

    Impact of ICARDA Research on Australian Agriculture

    Get PDF
    Research and Development/Tech Change/Emerging Technologies,

    The non-genomic effects of high doses of Rosiglitazone on cell growth and apoptosis in cultured monocytic cells

    Get PDF
    Peroxisome Proliferator-Activated Receptor gamma (PPARγ) is a ligand-activated transcription factor which belongs to the nuclear hormone superfamily and has multiple pharmacological ligands called Thiazolidinediones (TZDs). TZDs are a class of drugs used in the treatment of type 2 diabetic patients. Rosiglitazone is one such TZD, and is used clinically to treat type 2 diabetes. In this study, the effect of Rosiglitazone on cell growth and apoptosis in cultured monocytic monomac 6 (MM6) cells was investigated. Over a 14 day period, MM6 cells were cultured in vitro and treated with 1μM and 10μM Rosiglitazone. Cell viability and proliferation were evaluated by Haemocytometer cell count and MTS assay respectively. Turbidity due to cell density was assessed spectrophotometrically. Apoptosis was determined by Caspase-Glo 3/7 assay. Expression of the endoplasmic reticulum (ER) stress-inducible protein sarco-endoplasmic reticulum Ca2+ATPase-2b (SERCA2b) was determined by Western blot. Neither 1μM nor 10μM Rosiglitazone exerted statistically significant inhibitory effects on cell proliferation, turbidity due to cell density, or cell viability (p > 0.05 in all cases). In contrast, Rosiglitazone induced increased apoptosis, but a significant difference was only observed in 10μM-treated cells compared with control cells (3.04 ± 0.52 control; p < 0.05) while 1μM-treated cells showed a non-significant increase (1.50 ± .06 control; p > 0.05). Meanwhile the expression of SERCA2b was up-regulated significantly in cells treated for >4hrs (e.g 2.45 ± 0.06 control at 24 hrs; p < 0.05) with 10μM Rosiglitazone. It was concluded that high doses (10μM) of Rosiglitazone up-regulate SERCA2b expression and induce apoptosis of MM6 cells by activating an ER stress response via a PPARγ-independent mechanism. The therapeutic relevance of these observations is a matter for further investigations. Key words: Rosiglitazone, PPARγ, Monocytes, ER Stress, SERCA2b, Apoptosi

    Determination of the strange nucleon form factors

    Get PDF
    The strange contribution to the electric and magnetic form factors of the nucleon is determined at a range of discrete values of Q2Q^2 up to 1.41.4 GeV2^2. This is done by combining recent lattice QCD results for the electromagnetic form factors of the octet baryons with experimental determinations of those quantities. The most precise result is a small negative value for the strange magnetic moment: GMs(Q2=0)=0.07±0.03μNG_M^s(Q^2=0) = -0.07\pm0.03\,\mu_N. At larger values of Q2Q^2 both the electric and magnetic form factors are consistent with zero to within 22-sigma

    Investigation of poly(2-methoxy-5-(2 '-ethylhexyloxy)-1,4-phenylenevinylene) prepared via a chloro precursor route

    Get PDF
    We report the characterisation of an insoluble MEHPPV (I-MEHPPV) prepared via a chloro precursor route. Optical absorption and emission spectra are discussed with reference to those of the common soluble variant. PL quantum efficiencies are also reported. Results obtained for single ITO/I-MEHPPV/A1 and double layer ITO/I-MEHPPV/electron transport layer (ETL)/A1 LED structures are discussed. Peak luminances of 800cd/m(2) are found for the multilayer device and a peak EL external quantum efficiency of 0.1 1% (power conversion efficiency of 1.5x10(-5)W/W) is obtained

    Charge Symmetry Violation in the Electromagnetic Form Factors of the Proton

    Get PDF
    Experimental tests of QCD through its predictions for the strange-quark content of the proton have been drastically restricted by our lack of knowledge of the violation of charge symmetry (CSV). We find unexpectedly tiny CSV in the proton's electromagnetic form factors by performing the first extraction of these quantities based on an analysis of lattice QCD data. The resulting values are an order of magnitude smaller than current bounds on proton strangeness from parity violating electron-proton scattering experiments. This result paves the way for a new generation of experimental measurements of the proton's strange form factors to challenge the predictions of QCD

    Multi-Objective Big Data Optimization with jMetal and Spark

    Get PDF
    Big Data Optimization is the term used to refer to optimization problems which have to manage very large amounts of data. In this paper, we focus on the parallelization of metaheuristics with the Apache Spark cluster computing system for solving multi-objective Big Data Optimization problems. Our purpose is to study the influence of accessing data stored in the Hadoop File System (HDFS) in each evaluation step of a metaheuristic and to provide a software tool to solve these kinds of problems. This tool combines the jMetal multi-objective optimization framework with Apache Spark. We have carried out experiments to measure the performance of the proposed parallel infrastructure in an environment based on virtual machines in a local cluster comprising up to 100 cores. We obtained interesting results for computational e ort and propose guidelines to face multi-objective Big Data Optimization problems.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Releasing The Anti-inflammatory Potential of Paralysed Skeletal Muscle: The Circulating Cytokine Response to Voluntary Upper-limb Exercise With/Without The Addition of Functional Electrical Stimulation (FES)-evoked Lower-limb Contractions

    Get PDF
    Skeletal muscle is a rich store of inflammatory mediating ‘myokines’. Following release from contracting muscle, the myokine interleukin-6 (IL-6) promotes a circulating anti-inflammatory environment associated with a reduced risk of cardiovascular disease (CVD). The metabolic and functional consequences of lower-limb paralysis, including the gain in relative adiposity and physical inactivity, result in a high prevalence of CVD in individuals with a spinal cord injury (SCI). However, the magnitude of any contraction-induced myokine response in this population may be limited by the small active muscle mass of the upper-limb. The combination of voluntary, upper-limb exercise and involuntary, functional electrical stimulation (FES)-evoked lower-limb cycling termed ‘hybrid’ exercise, may augment the acute myokine response by activating a greater volume of muscle mass than upper-limb exercise alone. Five community-based individuals with motor complete, thoracic SCI (Age=44±15 years; Body mass=66.6±14.3 kg) and at least 3 months FES-evoked cycling experience volunteered to participate. On separate occasions, each participant performed 30 min of voluntary upper-limb, hand cycling exercise with (HYBRID) and without (ARM only) the addition of FES-evoked lower-limb cycling at a fixed workload. Blood samples were collected at rest, immediately post-exercise, and 1 and 2 h post-exercise. Plasma concentrations of IL-6, IL-10 and IL-1ra were subsequently determined by enzyme linked immunoassay. Estimated energy expenditure was significantly higher in HYBRID (154±25 kcal) than ARM (132±21 kcal) (P=0.01; ES=0.90). Plasma IL-6 concentrations were significantly elevated following HYBRID, with values 1 h and 2 h post-exercise significantly higher than rest and immediately post-exercise (P\u3c0.04). A small (~50%) non-significant increase in IL-6 was present 1 h and 2 h post-exercise following ARM, however concentrations were significantly higher in HYBRID than ARM at the same time points (P\u3c0.02). Plasma IL-10 concentrations were unaffected by exercise in ARM. Although not attaining statistical significance, there was a tendency for IL-10 concentrations to rise in HYBRID, with an 85% increase in IL-10 concentrations at 2 h post exercise. Plasma IL-1ra was unaffected by exercise in both trials. Initial findings suggest paralysed skeletal muscle releases the myokine IL-6 in response to electrically evoked contractions. Further, voluntary upper-limb exercise combined with involuntary lower-limb FES-evoked exercise had the tendency to elevate plasma concentrations of the anti-inflammatory cytokine IL-10; this effect was not present when performing arm exercise alone. Hybrid exercise may offer a method of maximising the anti-inflammatory potential of acute exercise in individuals with a SCI. The current findings require verification in a larger cohort

    The role of the pion cloud in the interpretation of the valence light-cone wavefunction of the nucleon

    Get PDF
    The pion cloud renormalises the light-cone wavefunction of the nucleon which is measured in hard, exclusive photon-nucleon reactions. We discuss the leading twist contributions to high-energy exclusive reactions taking into account both the pion cloud and perturbative QCD physics. The nucleon's electromagnetic form-factor at high Q2Q^2 is proportional to the bare nucleon probability ZZ and the cross-sections for hard (real at large angle or deeply virtual) Compton scattering are proportional to Z2Z^2. Our present knowledge of the pion-nucleon system is consistent with Z=0.7±0.2Z = 0.7 \pm 0.2. If we apply just perturbative QCD to extract a light-cone wavefunction directly from these hard exclusive cross-sections, then the light-cone wavefunction that we extract measures the three valence quarks partially screened by the pion cloud of the nucleon. We discuss how this pion cloud renormalisation effect might be understood at the quark level in terms of the (in-)stability of the perturbative Dirac vacuum in low energy QCD.Comment: Expanded Discussion of Phenomenology and Spin Physic
    corecore