93 research outputs found

    High-TcT_c superconductivity by phase cloning

    Get PDF
    We consider a BCS-type model in the spin formalism and argue that the structure of the interaction provides a mechanism for control over directions of the spin \vect S other than SzS_z, which is being controlled via the conventional chemical potential. We also find the conditions for the appearance of a high-TcT_c superconducting phase.Comment: 11 pages, 5 figures v3: section 2 edite

    Second-quantization picture of the edge currents in the fractional quantum Hall effect

    Full text link
    We study the quantum theory of two-dimensional electrons in a magnetic field and an electric field generated by a homogeneous background. The dynamics separates into a microscopic and macroscopic mode. The latter is a circular Hall current which is described by a chiral quantum field theory. It is shown how in this second quantized picture a Laughlin-type wave function emerges.Comment: 12 pages, 1 figure, LaTeX; comments on the particle density and the charge added, the figure improve

    Time-ordering Dependence of Measurements in Teleportation

    Full text link
    We trace back the phenomenon of "delayed-choice entanglement swapping" as it was realized in a recent experiment to the commutativity of the projection operators that are involved in the corresponding measurement process. We also propose an experimental set-up which depends on the order of successive measurements corresponding to noncommutative projection operators. In this case entanglement swapping is used to teleport a quantum state from Alice to Bob, where Bob has now the possibility to examine the noncommutativity within the quantum history.Comment: 20 pages, 7 figures; v2; formalism of isometries elaborately discussed, some changes in formulas, figure and reference added; typos correcte

    Emergence of order in selection-mutation dynamics

    Full text link
    We characterize the time evolution of a d-dimensional probability distribution by the value of its final entropy. If it is near the maximally-possible value we call the evolution mixing, if it is near zero we say it is purifying. The evolution is determined by the simplest non-linear equation and contains a d times d matrix as input. Since we are not interested in a particular evolution but in the general features of evolutions of this type, we take the matrix elements as uniformly-distributed random numbers between zero and some specified upper bound. Computer simulations show how the final entropies are distributed over this field of random numbers. The result is that the distribution crowds at the maximum entropy, if the upper bound is unity. If we restrict the dynamical matrices to certain regions in matrix space, for instance to diagonal or triangular matrices, then the entropy distribution is maximal near zero, and the dynamics typically becomes purifying.Comment: 8 pages, 8 figure

    Asymptotic Neutrality of Large-Z Ions

    Get PDF
    Let N(Z) denote the number of electrons that a nucleus of charge Z binds in nonrelativistic quantum theory. It is proved that (N(Z))/Z → 1 as Z → ∞. The Pauli principle plays a critical role

    Asymptotic Neutrality of Large-Z Ions

    Get PDF
    Let N(Z) denote the number of electrons that a nucleus of charge Z binds in nonrelativistic quantum theory. It is proved that (N(Z))/Z → 1 as Z → ∞. The Pauli principle plays a critical role

    Electrostatic boundary value problems in the Schwarzschild background

    Get PDF
    The electrostatic potential of any test charge distribution in Schwarzschild space with boundary values is derived. We calculate the Green's function, generalize the second Green's identity for p-forms and find the general solution. Boundary value problems are solved. With a multipole expansion the asymptotic property for the field of any charge distribution is derived. It is shown that one produces a Reissner--Nordstrom black hole if one lowers a test charge distribution slowly toward the horizon. The symmetry of the distribution is not important. All the multipole moments fade away except the monopole. A calculation of the gravitationally induced electrostatic self-force on a pointlike test charge distribution held stationary outside the black hole is presented.Comment: 18 pages, no figures, uses iopart.st

    Approach to equilibrium for a class of random quantum models of infinite range

    Full text link
    We consider random generalizations of a quantum model of infinite range introduced by Emch and Radin. The generalization allows a neat extension from the class l1l_1 of absolutely summable lattice potentials to the optimal class l2l_2 of square summable potentials first considered by Khanin and Sinai and generalised by van Enter and van Hemmen. The approach to equilibrium in the case of a Gaussian distribution is proved to be faster than for a Bernoulli distribution for both short-range and long-range lattice potentials. While exponential decay to equilibrium is excluded in the nonrandom l1l_1 case, it is proved to occur for both short and long range potentials for Gaussian distributions, and for potentials of class l2l_2 in the Bernoulli case. Open problems are discussed.Comment: 10 pages, no figures. This last version, to appear in J. Stat. Phys., corrects some minor errors and includes additional references and comments on the relation to experiment

    Growth of perturbations in an expanding universe with Bose-Einstein condensate dark matter

    Full text link
    We study the growth of perturbations in an expanding Newtonian universe with Bose-Einstein condensate dark matter. We first ignore special relativistic effects and derive a differential equation governing the evolution of the density contrast in the linear regime taking into account quantum pressure and self-interaction. This equation can be solved analytically in several cases. We argue that an attractive self-interaction can enhance the Jeans instability and fasten the formation of structures. Then, we take into account pressure effects (coming from special relativity) in the evolution of the cosmic fluid and add the contribution of radiation, baryons and dark energy (cosmological constant). For a BEC dark matter with repulsive self-interaction (positive pressure) the scale factor increases more rapidly than in the standard \Lambda CDM model where dark matter is pressureless while for a BEC dark matter with attractive self-interaction (negative pressure) it increases less rapidly. We study the linear development of the perturbations in these two cases and show that the perturbations grow faster in a BEC dark matter than in a pressureless dark matter. This confirms a recent result of Harko (2011). Finally, we consider a "dark fluid" with a generalized equation of state p=(\alpha \rho + k \rho ^2)c^2 having a component p=k \rho ^2 c^2 similar to a BEC dark matter and a component p=\alpha \rho c^2 mimicking the effect of the cosmological constant (dark energy). We find optimal parameters that give a good agreement with the standard \Lambda CDM model assuming a finite cosmological constant

    The LQG -- String: Loop Quantum Gravity Quantization of String Theory I. Flat Target Space

    Full text link
    We combine I. background independent Loop Quantum Gravity (LQG) quantization techniques, II. the mathematically rigorous framework of Algebraic Quantum Field Theory (AQFT) and III. the theory of integrable systems resulting in the invariant Pohlmeyer Charges in order to set up the general representation theory (superselection theory) for the closed bosonic quantum string on flat target space. While we do not solve the, expectedly, rich representation theory completely, we present a, to the best of our knowledge new, non -- trivial solution to the representation problem. This solution exists 1. for any target space dimension, 2. for Minkowski signature of the target space, 3. without tachyons, 4. manifestly ghost -- free (no negative norm states), 5. without fixing a worldsheet or target space gauge, 6. without (Virasoro) anomalies (zero central charge), 7. while preserving manifest target space Poincar\'e invariance and 8. without picking up UV divergences. The existence of this stable solution is exciting because it raises the hope that among all the solutions to the representation problem (including fermionic degrees of freedom) we find stable, phenomenologically acceptable ones in lower dimensional target spaces, possibly without supersymmetry, that are much simpler than the solutions that arise via compactification of the standard Fock representation of the string. Moreover, these new representations could solve some of the major puzzles of string theory such as the cosmological constant problem. The solution presented in this paper exploits the flatness of the target space in several important ways. In a companion paper we treat the more complicated case of curved target spaces.Comment: 46 p., LaTex2e, no figure
    corecore