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Let N(Z) denote the number of electrons that a nucleus of charge Z binds in nonrelativis-
tic quantum theory. It is proved that N(Z)/Z I as Z ~. The Pauli principle plays a
critical role.
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Mathematically rigorous results about binding en-
ergies of multiparticle systems of charged particles
in nonrelativistic quantum mechanics are clearly
basic to the foundations of atomic, molecular, and
solid-state physics. We want to present here a new
result in this area which could be called quantum
potential theory; details of our proof will appear
elsewhere. '

Let H(N, Z) be the Hamiltonian of a nucleus of
charge Z and %electrons, i.e., 2

N(Z) for large Z. Sigal7 proved that

lim sup [N(Z)/Z] ~ 2,

lim [InN&(Z)/Inz] = 1.

Recently, Lieb has proven the bounds

N(Z) & 2Z+1, N (Z) & 2Z+1,

(2)

for all Z (not just Z large). The same result holds in
any symmetry sector. We have proven the funda-
mental result that

H(N, Z)
limz N(Z)/Z = 1. (3)

= X(—5;—Z~x, ~

')+ X ~x; —xj~ '. (1)

Its minimum energy for fermion states' will be
denoted by E(N, Z) and its minimum over all
states by Eb(N, Z) It is useful to. study E& to
understand where the Pauli principle plays a central
role.

It is a fundamental result of Ruskai and Sigals
that for any fixed Z, there is a number6 N(Z)
[N&(z)] so that E(N(Z), Z) =E(N(Z)+j, Z) for
all j [Eb(N(Z), Z) = Eb(N(Z) +j,Z) for all j].
Thus N(Z) is the maximal number of electrons
that the nucleus binds.

We are concerned here with the asymptotics of

Lest the reader think that (3) is "obvious, " we
point out that it is false for bosons, for Benguria
and Lieb have shown that

ltmtnf [N, (Z)/Z] ~ ~„
where X, is the critical charge for the Hartree equa-
tion. It is known' rigorously that 1 ( ~, ( 2; nu-
merically" A. , = 1.2. In our sketch of the proof of
(3), we shall emphasize where the Pauli principle
enters.

Although one expects N(Z) = Z+ k for some
constant k ( = 1, 2), our proof of (3) does not rule
out a possibility like Z+ Z for some o. ( 1.

One part of our proof follows closely Sigal's7
proof of (2). Sigal gets 2Z because he uses'2 the
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obvious fact that if one has a nucleus of charge Z
and removes the electron farthest from the nucleus,
there is a gain in energy as long as N —1)2Z
(since the worst case would be to have the other
N —1 electrons at the opposite side of the nucleus
almost as far away). It is intuitively obvious that
one can do better by choosing more carefully the
particle to be removed. Indeed, an important ele-
ment for our proof is the following: For any e,
there exists an No so that for all configurations
(x, )

~
~ of N ~ No points we have

r

(1 e) N—1
maxb (4)

This, in effect, is a factor of two better than Sigal's
estimate.

We prove (4) by first proving a continuum ana-
log; namely, for any positive charge density
p A h(x) and any e, we can find a point x A 0, in
the support of p, '3 such that

1 1 —e
P~(x) —= J ~p(y) ~

J &p(y). (5)
I x —71

We obtain (4) from (5) by an argument via con-
tradiction. If (4) fails for arbitrarily large N, we can
find a suitable limit'4 of the densities
N 'X, 8(x —x, ) so that (5) fails.

(5) is proven as follows: First consider the case
where $ is continuous, 0$ suppp, and suppp is
bounded. Then

f(x) =@,(x) —lxl '(1 —e)J dp(y)

theorem of Choquet'5: Given any finite positive
charge density p, and given e, one can find K com-
pact so that the charge outside E is at most e and so
that the restriction of p to K generates a continuous
potential.

(4) and (5) are clearly classical analogs of the
basic result (3) that we want to prove. We control
the possible quantum corrections to (4) by the
same method Sigal used in his proof of (2).

By slightly improving (4) and following Ref. 7,
one constructs functions (j,)

~
0 on R3~ obeying

the following: (i) jo is symmetric in
X= (x,, ... ,x~) and j, (a W 0) are symmetric in

(x~)» ~, . (ii) jo is supported in the region where
IX I

=—max, I x, I & R. (iii) j, is supported in the
region where

Ixl„~ (1—.)z,
1 N(1 —e)

~ ~. I xb —x. I

(iv) One has the estimate, for the 3N-dimensional
gradients, '

N

X ('7j ) (X) ~ CN'~ p 'IXI-t -(7)
a 0

(v) One has g+ olj, (X) I
=1 for all X. To be pre-

cise, for any &, there is an N0, and a positive
number C, such that such a set exists for any
N )N0 and R. C depends only on e and not on N
or R.

To prove (3), we use the localization formula '7

N

H (N, Z) = Xj~ Hj ~
—X ('7j ) 2

a 0 a 0

N N= Xi.[H X(~j,)']j.. -
0

Nj,[H(N, Z) —X(Vji, ) ]j,~j,E(N —1,Z).
b-0

We shall take'

is a function whose average over large spheres is
positive. Thus, since f vanishes at ~ and is har-
monic outside suppp, f is positive at some points
arbitrarily close to suppp and so by continuity of Q~,f is nonnegative somewhere on suppp. Given the
special case, one obtains (5) in general by using a (3) will follow if we prove that if we choose R suit-

ably and N ~ Z(1+ e'), Z large, then for each a

with ~ «1 to be chosen later. To obtain (8) for a = N, write

H(NZ) =H(N 1,Z) —b, ~ —Zlx—~l '+ X lx~ —x~l
bWN

use j~H(N 1,Z)j~ ~ E(N —1,Z) J„(becaus—ej~ preserves antisymmetry in 1,...,N —1), —Q~ ~ () (6)
and (7) to see that'6

[left-hand side of (8)]—[right-hand side of (8)] ~j, lx, l
'[ —Z+N(1 —e) —CN n '],
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which is positive for N ~ Z I(1 —e) + e] and Z large (for any fixed n). A similar argument applies for any
a AO.

To control the core (i.e. , a = 0), we write H(N, Z) = H(N, Z) + rep where rep denotes the electron repul-
sion. By filling up levels in hydrogen we obtain

H(N, Z) ~ —C,Z'Nti'. (10)

Since
~ x; —xJ ~

~ 2
~
X

~

~ 2R on the support of jc, rep ~ , N (—N—1)R '. Thus'6 for a = 0

left-hand side of (8) ~ jo [ —CtZ'N' '+ C,N' 'n ' —C,(l —e) 'n 'N' ']
which is positive [and so larger than the right-hand
side of (8)] if N ~ Z and u is chosen sufficiently
small. This completes our sketch of the proof of
our basic result (3).

The fact that we had fermions and not bosons
enters in the bound (10). The Pauli principle
prevents the collapse'9 from becoming so great that
the quantum corrections [as represented, for exam-
ple, by the size of the "localization error, "
gb c('7jb) ] overcome the basic classical potential
theory result Eq. (4).
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2We choose units of length and energy so that f2/
2m = e2= 1. In (1), we have taken infinite nuclear mass;
our proof of Eq. (3) below extends to finite nuclear mass
and to the allowance of arbitrary magnetic fields. See
Ref. 1.

3We have in mind the Pauli principle with two spin
states. The number of spin states (so long as it is a fixed
finite number) does not affect the truth of Eq. (3).

4The minimum without any symmetry restriction oc-
curs on a tota11y symmetric state, so that we could just as
well view Eb(N, Z) as a Bose energy.

5The result for Eb is due to M. B. Ruskai, Commun.
Math. Phys. 82, 457 (1982). The fermion result was ob-

tained by I. Sigal, Commun. Math. Phys. 85, 309 (1982).
M. B. Ruskai, Commun. Math. Phys. 85, 325 (1982),
then used her methods to obtain the fermion result.

6N(Z) denotes the smallest number obeying this con-
dition.

7I. Sigal, to be published.
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appears in E. H. Lieb, Phys. Rev. Lett. 52, 315 (1984).
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Weizsacker and Hartree energies as functions of the de-
gree of ionization" (to be published).

&2He also needs a method to control quantum correc-
tions. This method is discussed later.

13The support of p denoted by supp@ is jus
points x where an arbitrarily small ball about x has some
charge.

&4To be sure the limit exists and is not a delta function
or zero, one may have to scale the x, in an %-dependent
way.

t~G. Choquet, C. R. Acad. Sci. 244, 1606-1609 (1957).
t6Since ~x, ~

~ ~X~ for all a, we can replace the right-
hand side of (6) by CN'i R '~x,

~

'. Since the gradients
are all zero if ~X ~ ( (1 —e) R, we can replace the right-
hand side of (6) also by C(1 —e) 'N'i2R

&7This formula is easy to prove by expanding

$,[j„[j„H]].Versions of it were found in successive-

ly more general situations by R. Ismagilov, Sov. Math.
Dokl. 2, 1137 (1961); J. Morgan, J. Operator Theory 1,
109 (1979), and J. Morgan and B. Simon, Int. J. Quan-
tum Chem. 17, 1143 (1980). It was I. Sigal in Ref. 5

who realized its significance for bound-state questions.
~8This is precisely the scaling for Thomas-Fermi and for

the real atomic system; see E. Lieb and B. Simon, Adv.
Math. 23, 22 (1977).

~9For bosons, the "electron" density collapses as Z
not Z ' ', see Ref. 9.
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