492 research outputs found

    Radicalization processes and transitional phases in female and male detainees residing in Dutch terrorism wings.

    Get PDF
    Background: Radicalization, violent extremism, and terrorism are risks to societal security. Although research on terrorism-related behaviors is increasing, thorough empirical studies are rare. Methods: This study investigates radicalization processes and transitions in a matched sample of female and male terrorist suspects and convicts (N = 26) residing in Dutch penitentiary terrorism wings. Results:Results show that both men and women often experienced discrimination. A subgroup of women grew up in a stressful family environment and lacked emotional support from their family, whereas the other women did not experience such circumstances. The majority of the study sample was susceptible to connecting with radicalized friends or family members. Interestingly, factors that initially led to radicalization (e.g., a utopian image of the Islamic State) could later turn out to be factors associated with abandoning extremism. Conclusions: In this study, differences in radicalization processes and transitional phases between women and men emerged. Men more often had police contact prior to a terrorism-related offense. Making an effort to right old mistakes seemed important in the radicalization processes of men, whereas women had a stronger desire for emotional support and were more driven by experienced trauma and feelings of loneliness. This study provides input for gender-specific prevention and disengagement interventions

    Biodesulphurized subbituminous coal by different fungi and bacteria studied by reductive pyrolysis. Part 1: Initial coal

    Get PDF
    One of the perspective methods for clean solid fuels production is biodesulphurization. In order to increase the effect of this approach it is necessary to apply the advantages of more informative analytical techniques. Atmospheric pressure temperature programming reduction (AP-TPR) coupled with different detection systems gave us ground to attain more satisfactory explanation of the effects of biodesulphurization on the treated solid products. Subbituminous high sulphur coal from ‘‘Pirin” basin (Bulgaria) was selected as a high sulphur containing sample. Different types of microorganisms were chosen and maximal desulphurization of 26% was registered. Biodesulphurization treatments were performed with three types of fungi: ‘‘Trametes Versicolor” – ATCC No. 200801, ‘‘Phanerochaeta Chrysosporium” – ME446, Pleurotus Sajor-Caju and one Mixed Culture of bacteria – ATCC No. 39327. A high degree of inorganic sulphur removal (79%) with Mixed Culture of bacteria and consecutive reduction by 13% for organic sulphur (Sorg) decrease with ‘‘Phanerochaeta Chrysosporium” and ‘‘Trametes Versicolor” were achieved. To follow the Sorg changes a set of different detection systems i.e. AP-TPR coupled ‘‘on-line” with mass spectrometry (AP-TPR/MS), on-line with potentiometry (AP-TPR/pot) and by the ‘‘off-line” AP-TPR/GC/MS analysis was used. The need of applying different atmospheres in pyrolysis experiments was proved and their effects were discussed. In order to reach more precise total sulphur balance, oxygen bomb combustion followed by ion chromatography was used

    Conditional phase shift from a quantum dot in a pillar microcavity

    Full text link
    Large conditional phase shifts from coupled atom-cavity systems are a key requirement for building a spin photon interface. This in turn would allow the realisation of hybrid quantum information schemes using spin and photonic qubits. Here we perform high resolution reflection spectroscopy of a quantum dot resonantly coupled to a pillar microcavity. We show both the change in reflectivity as the quantum dot is tuned through the cavity resonance, and measure the conditional phase shift induced by the quantum dot using an ultra stable interferometer. These techniques could be extended to the study of charged quantum dots, where it would be possible to realise a spin photon interface

    Finite size scaling for quantum criticality using the finite-element method

    Full text link
    Finite size scaling for the Schr\"{o}dinger equation is a systematic approach to calculate the quantum critical parameters for a given Hamiltonian. This approach has been shown to give very accurate results for critical parameters by using a systematic expansion with global basis-type functions. Recently, the finite element method was shown to be a powerful numerical method for ab initio electronic structure calculations with a variable real-space resolution. In this work, we demonstrate how to obtain quantum critical parameters by combining the finite element method (FEM) with finite size scaling (FSS) using different ab initio approximations and exact formulations. The critical parameters could be atomic nuclear charges, internuclear distances, electron density, disorder, lattice structure, and external fields for stability of atomic, molecular systems and quantum phase transitions of extended systems. To illustrate the effectiveness of this approach we provide detailed calculations of applying FEM to approximate solutions for the two-electron atom with varying nuclear charge; these include Hartree-Fock, density functional theory under the local density approximation, and an "exact"' formulation using FEM. We then use the FSS approach to determine its critical nuclear charge for stability; here, the size of the system is related to the number of elements used in the calculations. Results prove to be in good agreement with previous Slater-basis set calculations and demonstrate that it is possible to combine finite size scaling with the finite-element method by using ab initio calculations to obtain quantum critical parameters. The combined approach provides a promising first-principles approach to describe quantum phase transitions for materials and extended systems.Comment: 15 pages, 19 figures, revision based on suggestions by referee, accepted in Phys. Rev.

    Phase transitions in the one-dimensional frustrated quantum XY model and Josephson-junction ladders

    Full text link
    A one-dimensional quantum version of the frustrated XY (planar rotor) model is considered which can be physically realized as a ladder of Josephson-junctions at half a flux quantum per plaquette. This system undergoes a superconductor to insulator transition at zero temperature as a function of charging energy. The critical behavior is studied using a Monte Carlo transfer matrix applied to the path-integral representation of the model and a finite-size-scaling analysis of data on small system sizes. Depending on the ratio between the interchain and intrachain couplings the system can have single or double transitions which is consistent with the prediction that its critical behavior should be described by the two-dimensional classical XY-Ising model.Comment: 13 pages, Revtex, J. Appl. Phys. (to appear), Inpe-las-00

    Towards Better Integrators for Dissipative Particle Dynamics Simulations

    Get PDF
    Coarse-grained models that preserve hydrodynamics provide a natural approach to study collective properties of soft-matter systems. Here, we demonstrate that commonly used integration schemes in dissipative particle dynamics give rise to pronounced artifacts in physical quantities such as the compressibility and the diffusion coefficient. We assess the quality of these integration schemes, including variants based on a recently suggested self-consistent approach, and examine their relative performance. Implications of integrator-induced effects are discussed.Comment: 4 pages, 3 figures, 2 tables, accepted for publication in Phys. Rev. E (Rapid Communication), tentative publication issue: 01 Dec 200

    Vibrational Excitations in Weakly Coupled Single-Molecule Junctions: A Computational Analysis

    Full text link
    In bulk systems, molecules are routinely identified by their vibrational spectrum using Raman or infrared spectroscopy. In recent years, vibrational excitation lines have been observed in low-temperature conductance measurements on single molecule junctions and they can provide a similar means of identification. We present a method to efficiently calculate these excitation lines in weakly coupled, gateable single-molecule junctions, using a combination of ab initio density functional theory and rate equations. Our method takes transitions from excited to excited vibrational state into account by evaluating the Franck-Condon factors for an arbitrary number of vibrational quanta, and is therefore able to predict qualitatively different behaviour from calculations limited to transitions from ground state to excited vibrational state. We find that the vibrational spectrum is sensitive to the molecular contact geometry and the charge state, and that it is generally necessary to take more than one vibrational quantum into account. Quantitative comparison to previously reported measurements on pi-conjugated molecules reveals that our method is able to characterize the vibrational excitations and can be used to identify single molecules in a junction. The method is computationally feasible on commodity hardware.Comment: 9 pages, 7 figure

    Many-particle Hamiltonian for open systems with full Coulomb interaction: Application to classical and quantum time-dependent simulations of nanoscale electron devices

    Get PDF
    Premi a l'excel·lència investigadora. Àmbit de les Ciències Tecnològiques i Enginyeries. 2010A many-particle Hamiltonian for a set of particles with Coulomb interaction inside an open system is described without any perturbative or mean-field approximation. The boundary conditions of the Hamiltonian on the borders of the open system [in the real three-dimensional (3D) space representation] are discussed in detail to include the Coulomb interaction between particles inside and outside of the open system. The many-particle Hamiltonian provides the same electrostatic description obtained from the image-charge method, but it has the fundamental advantage that it can be directly implemented into realistic (classical or quantum) electron device simulators via a 3D Poisson solver. Classically, the solution of this many-particle Hamiltonian is obtained via a coupled system of Newton-type equations with a different electric field for each particle. The quantum-mechanical solution of this many-particle Hamiltonian is achieved using the quantum (Bohm) trajectory algorithm [X. Oriols, Phys. Rev. Lett. 98, 066803 (2007)]. The computational viability of the many-particle algorithms to build powerful nanoscale device simulators is explicitly demonstrated for a (classical) double-gate field-effect transistor and a (quantum) resonant tunneling diode. The numerical results are compared with those computed from time-dependent mean-field algorithms showing important quantitative differences

    Hybrid Equation/Agent-Based Model of Ischemia-Induced Hyperemia and Pressure Ulcer Formation Predicts Greater Propensity to Ulcerate in Subjects with Spinal Cord Injury

    Get PDF
    Pressure ulcers are costly and life-threatening complications for people with spinal cord injury (SCI). People with SCI also exhibit differential blood flow properties in non-ulcerated skin. We hypothesized that a computer simulation of the pressure ulcer formation process, informed by data regarding skin blood flow and reactive hyperemia in response to pressure, could provide insights into the pathogenesis and effective treatment of post-SCI pressure ulcers. Agent-Based Models (ABM) are useful in settings such as pressure ulcers, in which spatial realism is important. Ordinary Differential Equation-based (ODE) models are useful when modeling physiological phenomena such as reactive hyperemia. Accordingly, we constructed a hybrid model that combines ODEs related to blood flow along with an ABM of skin injury, inflammation, and ulcer formation. The relationship between pressure and the course of ulcer formation, as well as several other important characteristic patterns of pressure ulcer formation, was demonstrated in this model. The ODE portion of this model was calibrated to data related to blood flow following experimental pressure responses in non-injured human subjects or to data from people with SCI. This model predicted a higher propensity to form ulcers in response to pressure in people with SCI vs. non-injured control subjects, and thus may serve as novel diagnostic platform for post-SCI ulcer formation. © 2013 Solovyev et al

    Critical Exponents of the Fully Frustrated 2-D Xy Model

    Full text link
    We present a detailed study of the critical properties of the 2-D XY model with maximal frustration in a square lattice. We use extensive Monte Carlo simulations to study the thermodynamics of the spin and chiral degrees of freedom, concentrating on their correlation functions. The gauge invariant spin-spin correlation functions are calculated close to the critical point for lattice sizes up to 240×240240\times 240; the chiral correlation functions are studied on lattices up to 96×9696\times 96. We find that the critical exponents of the spin phase transition are ν=0.3069\nu=0.3069, and η=0.1915\eta=0.1915, which are to be compared with the unfrustrated XY model exponents ν=1/2\nu=1/2 and η=0.25\eta=0.25. We also find that the critical exponents of the chiral transition are νχ=0.875\nu_{\chi}=0.875, 2β=0.19362\beta=0.1936, 2γ=1.822\gamma= 1.82, and 2γ=1.0252\gamma\>\prime=1.025, which are different from the expected 2-D Ising critical exponents. The spin-phase transition occurs at TU(1)=0.446T_{U(1)}=0.446 which is about 7\% above the estimated chiral critical temperature TZ2=0.4206T_{Z_{2}}= 0.4206. However, because of the size of the statistical errors, it is difficult to decide with certainty whether the transitions occur at the same or at slightly different temperatures. Finally, the jump in the helicity modulus in the fully frustrated system is found to be about 23\% below the unfrustrated universal value. The most important consequence of these results is that the fully frustrated XY model appears to be in a novel universality class. Recent successful comparisons of some of these results with experimental data are also briefly discussed. (TO APPEAR IN PRB)Comment: 47 pages (PHYZZX
    corecore