A one-dimensional quantum version of the frustrated XY (planar rotor) model
is considered which can be physically realized as a ladder of
Josephson-junctions at half a flux quantum per plaquette. This system undergoes
a superconductor to insulator transition at zero temperature as a function of
charging energy. The critical behavior is studied using a Monte Carlo transfer
matrix applied to the path-integral representation of the model and a
finite-size-scaling analysis of data on small system sizes. Depending on the
ratio between the interchain and intrachain couplings the system can have
single or double transitions which is consistent with the prediction that its
critical behavior should be described by the two-dimensional classical XY-Ising
model.Comment: 13 pages, Revtex, J. Appl. Phys. (to appear), Inpe-las-00