336 research outputs found

    Beta-delayed fission probabilities of transfermium nuclei, involved in the r-process

    Get PDF
    For the nucleosynthesis of heavy and superheavy nuclei fission becomes very important when the r-process runs in a very high neutron density environment. In part, fission is responsible for the formation of heavy nuclei due to the inclusion of fission products as new seed nuclei (fission cycling). More than that, beta-delayed fission, along with spontaneous fission, is responsible in the late stages of the r-process for the suppression of superheavy element yields. For beta-delayed fission probability calculations a model description of the beta-strength- functions is required. Extended theoretical predictions for astro-physical applications were provided long ago, and new predictions also for superheavy nuclei with uptodate nuclear input are needed. For the further extension of data to heavier transactinides the models of strength- functions should be modified, taking into account more complicated level schemes. In our present calculations the strength-function model is based on the quasi-particle approximation of Finite Fermi Systems Theory. The probabilities of beta-delayed fission and beta-delayed neutron emission are calculated for some transfermium neutron-rich nuclei, and the influence of beta-delayed fission upon superheavy element formation is discussed

    Strange matter in core-collapse supernovae

    Full text link
    We discuss the possible impact of strange quark matter on the evolution of core-collapse supernovae with emphasis on low critical densities for the quark-hadron phase transition. For such cases the hot proto-neutron star can collapse to a more compact hybrid star configuration hundreds of milliseconds after core-bounce. The collapse triggers the formation of a second shock wave. The latter leads to a successful supernova explosion and leaves an imprint on the neutrino signal. These dynamical features are discussed with respect to their compatibility with recent neutron star mass measurements which indicate a stiff high density nuclear matter equation of state.Comment: 8 pages, 3 figures, Invited talk at the "Strangeness in Quark Matter" conference, 18-24 September 2011, Polish Academy of Arts and Sciences, Cracow, Polan

    New Stellar (n,γ)(n,\gamma) Cross Sections and The "Karlsruhe Astrophysical Database of Nucleosynthesis in Stars"

    Get PDF
    Since April 2005 a regularly updated stellar neutron cross section compilation is available online at http://nuclear-astrophysics.fzk.de/kadonis. This online-database is called the "Karlsruhe Astrophysical Database of Nucleosynthesis in Stars" project and is based on the previous Bao et al. compilation from the year 2000. The present version \textsc{KADoNiS} v0.2 (January 2007) includes recommended cross sections for 280 isotopes between 1^{1}H and 210^{210}Po and 75 semi-empirical estimates for isotopes without experimental information. Concerning stellar (n,γ)(n,\gamma) cross sections of the 32 stable, proton-rich isotopes produced by the pp process experimental information is only available for 20 isotopes, but 9 of them have rather large uncertainties of \geq9%. The first part of a systematic study of stellar (n,γ)(n,\gamma) cross sections of the pp-process isotopes 74^{74}Se, 84^{84}Sr, 102^{102}Pd, 120^{120}Te, 130^{130}Ba, 132^{132}Ba, 156^{156}Dy, and 174^{174}Hf is presented. In another application \textsc{KADoNiS} v0.2 was used for an modification of a reaction library of Basel university. With this modified library pp-process network calculations were carried out and compared to previous results.Comment: Proceedings "International Conference on Nuclear Data for Science and Technology 2007", Nice/ Franc

    Stellar (n,gamma) cross sections of p-process isotopes PartI: 102Pd, 120Te, 130,132Ba,and 156Dy

    Full text link
    We have investigated the (n,gamma) cross sections of p-process isotopes with the activation technique. The measurements were carried out at the Karlsruhe Van de Graaff accelerator using the 7Li(p,n)7Be source for simulating a Maxwellian neutron distribution of kT = 25 keV. Stellar cross section measurements are reported for the light p-process isotopes 102Pd, 120Te, 130,132Ba, and 156Dy. In a following paper the cross sections of 168Yb, 180W, 184Os, 190Pt, and 196Hg will be discussed. The data are extrapolated to p-process energies by including information from evaluated nuclear data libraries. The results are compared to standard Hauser-Feshbach models frequently used in astrophysics.Comment: 13 pages, 4 figure

    pp-Process simulations with a modified reaction library

    Get PDF
    We have performed pp-process simulations with the most recent stellar (n,γ)(n,\gamma) cross sections from the "Karlsruhe Astrophysical Database of Nucleosynthesis in Stars" project (version v0.2, http://nuclear-astrophysics.fzk.de/kadonis). The simulations were carried out with a parametrized supernova type II shock front model (``γ\gamma process'') of a 25 solar mass star and compared to recently published results. A decrease in the normalized overproduction factor could be attributed to lower cross sections of a significant fraction of seed nuclei located in the Bi and Pb region around the NN=126 shell closure.Comment: 5 pages, 1 figure Proceedings "Nuclear Physics in Astrophysics NPA-III", Dresden/Germany (2007

    R-process nucleosynthesis calculations with complete nuclear physics input

    Full text link
    The r-process constitutes one of the major challenges in nuclear astrophysics. Its astrophysical site has not yet been identified but there is observational evidence suggesting that at least two possible sites should contribute to the solar system abundance of r-process elements and that the r-process responsible for the production of elements heavier than Z=56 operates quite robustly producing always the same relative abundances. From the nuclear-physics point of view the r-process requires the knowledge of a large number of reaction rates involving exotic nuclei. These include neutron capture rates, beta-decays and fission rates, the latter for the heavier nuclei produced in the r-process. We have developed for the first time a complete database of reaction rates that in addition to neutron-capture rates and beta-decay half-lives includes all possible reactions that can induce fission (neutron-capture, beta-decay and spontaneous fission) and the corresponding fission yields. In addition, we have implemented these reaction rates in a fully implicit reaction network. We have performed r-process calculations for the neutrino-driven wind scenario to explore whether or not fission can contribute to provide a robust r-process pattern

    Signals of the QCD phase transition in core-collapse supernovae

    Full text link
    We explore the implications of the QCD phase transition during the postbounce evolution of core-collapse supernovae. Using the MIT bag model for the description of quark matter and assuming small bag constants, we find that the phase transition occurs during the early postbounce accretion phase. This stage of the evolution can be simulated with general relativistic three-flavor Boltzmann neutrino transport. The phase transition produces a second shock wave that triggers a delayed supernova explosion. If such a phase transition happens in a future galactic supernova, its existence and properties should become observable as a second peak in the neutrino signal that is accompanied by significant changes in the energy of the emitted neutrinos. In contrast to the first neutronization burst, this second neutrino burst is dominated by the emission of anti-neutrinos because the electron-degeneracy is lifted when the second shock passes through the previously neutronized matter.Comment: 5 pages, 3 figures, 1 table, submitted to PR

    (n,γ) cross-sections of light p nuclei: Towards an updated database for the p process

    Get PDF
    Abstract.: The nucleosynthesis of elements beyond iron is dominated by the s and r processes. However, a small amount of stable isotopes on the proton-rich side cannot be made by neutron capture and is thought to be produced by photodisintegration reactions on existing seed nuclei in the so-called "p process”. So far most of the p-process reactions are not yet accessible by experimental techniques and have to be inferred from statistical Hauser-Feshbach model calculations. The parametrization of these models has to be constrained by measurements on stable proton-rich nuclei. A series of (n,γ) activation measurements on p nuclei, related by detailed balance to the respective photodisintegrations, was carried out at the Karlsruhe Van de Graaff accelerator using the 7Li(p, n) 7Be source for simulating a Maxwellian neutron distribution of kT = 25keV. We present here preliminary results of our extended measuring program in the mass range between A = 74 and A = 132, including first experimental (n,γ) cross-sections of 74Se, 84Sr, 120Te and 132Ba, and an improved value for 130Ba. In all cases we find perfect agreement with the recommended MACS predictions from the Bao et al. compilatio

    Nucleosynthesis in thermonuclear supernovae with tracers: convergence and variable mass particles

    Full text link
    Nucleosynthetic yield predictions for multi-dimensional simulations of thermonuclear supernovae generally rely on the tracer particle method to obtain isotopic information of the ejected material for a given supernova simulation. We investigate how many tracer particles are required to determine converged integrated total nucleosynthetic yields. For this purpose, we conduct a resolution study in the number of tracer particles for different hydrodynamical explosion models at fixed spatial resolution. We perform hydrodynamic simulations on a co-expanding Eulerian grid in two dimensions assuming rotational symmetry for both pure deflagration and delayed detonation Type Ia supernova explosions. Within a given explosion model, we vary the number of tracer particles to determine the minimum needed for the method to give a robust prediction of the integrated yields of the most abundant nuclides. For the first time, we relax the usual assumption of constant tracer particle mass and introduce a radially vary- ing distribution of tracer particle masses. We find that the nucleosynthetic yields of the most abundant species (mass fraction > 10E-5) are reasonably well predicted for a tracer number as small as 32 per axis and direction - more or less independent of the explosion model. We conclude that the number of tracer particles that were used in extant published works appear to have been sufficient as far as integrated yields are concerned for the most copiously produced nuclides. Additionally we find that a suitably chosen tracer mass distribution can improve convergence for nuclei produced in the outer layer of the supernova where the constant tracer mass prescription suffers from poor spatial resolution.Comment: 9 pages, 5 figures, accepted for publication in MNRA
    corecore