336 research outputs found
Beta-delayed fission probabilities of transfermium nuclei, involved in the r-process
For the nucleosynthesis of heavy and superheavy nuclei fission becomes very important when the r-process runs in a very high neutron density environment. In part, fission is responsible for the formation of heavy nuclei due to the inclusion of fission products as new seed nuclei (fission cycling). More than that, beta-delayed fission, along with spontaneous fission, is responsible in the late stages of the r-process for the suppression of superheavy element yields. For beta-delayed fission probability calculations a model description of the beta-strength- functions is required. Extended theoretical predictions for astro-physical applications were provided long ago, and new predictions also for superheavy nuclei with uptodate nuclear input are needed. For the further extension of data to heavier transactinides the models of strength- functions should be modified, taking into account more complicated level schemes. In our present calculations the strength-function model is based on the quasi-particle approximation of Finite Fermi Systems Theory. The probabilities of beta-delayed fission and beta-delayed neutron emission are calculated for some transfermium neutron-rich nuclei, and the influence of beta-delayed fission upon superheavy element formation is discussed
Strange matter in core-collapse supernovae
We discuss the possible impact of strange quark matter on the evolution of
core-collapse supernovae with emphasis on low critical densities for the
quark-hadron phase transition. For such cases the hot proto-neutron star can
collapse to a more compact hybrid star configuration hundreds of milliseconds
after core-bounce. The collapse triggers the formation of a second shock wave.
The latter leads to a successful supernova explosion and leaves an imprint on
the neutrino signal. These dynamical features are discussed with respect to
their compatibility with recent neutron star mass measurements which indicate a
stiff high density nuclear matter equation of state.Comment: 8 pages, 3 figures, Invited talk at the "Strangeness in Quark Matter"
conference, 18-24 September 2011, Polish Academy of Arts and Sciences,
Cracow, Polan
New Stellar Cross Sections and The "Karlsruhe Astrophysical Database of Nucleosynthesis in Stars"
Since April 2005 a regularly updated stellar neutron cross section
compilation is available online at http://nuclear-astrophysics.fzk.de/kadonis.
This online-database is called the "Karlsruhe Astrophysical Database of
Nucleosynthesis in Stars" project and is based on the previous Bao et al.
compilation from the year 2000. The present version \textsc{KADoNiS} v0.2
(January 2007) includes recommended cross sections for 280 isotopes between
H and Po and 75 semi-empirical estimates for isotopes without
experimental information. Concerning stellar cross sections of the
32 stable, proton-rich isotopes produced by the process experimental
information is only available for 20 isotopes, but 9 of them have rather large
uncertainties of 9%. The first part of a systematic study of stellar
cross sections of the -process isotopes Se, Sr,
Pd, Te, Ba, Ba, Dy, and Hf is
presented. In another application \textsc{KADoNiS} v0.2 was used for an
modification of a reaction library of Basel university. With this modified
library -process network calculations were carried out and compared to
previous results.Comment: Proceedings "International Conference on Nuclear Data for Science and
Technology 2007", Nice/ Franc
Stellar (n,gamma) cross sections of p-process isotopes PartI: 102Pd, 120Te, 130,132Ba,and 156Dy
We have investigated the (n,gamma) cross sections of p-process isotopes with
the activation technique. The measurements were carried out at the Karlsruhe
Van de Graaff accelerator using the 7Li(p,n)7Be source for simulating a
Maxwellian neutron distribution of kT = 25 keV. Stellar cross section
measurements are reported for the light p-process isotopes 102Pd, 120Te,
130,132Ba, and 156Dy. In a following paper the cross sections of 168Yb, 180W,
184Os, 190Pt, and 196Hg will be discussed. The data are extrapolated to
p-process energies by including information from evaluated nuclear data
libraries. The results are compared to standard Hauser-Feshbach models
frequently used in astrophysics.Comment: 13 pages, 4 figure
-Process simulations with a modified reaction library
We have performed -process simulations with the most recent stellar
cross sections from the "Karlsruhe Astrophysical Database of
Nucleosynthesis in Stars" project (version v0.2,
http://nuclear-astrophysics.fzk.de/kadonis). The simulations were carried out
with a parametrized supernova type II shock front model (`` process'')
of a 25 solar mass star and compared to recently published results. A decrease
in the normalized overproduction factor could be attributed to lower cross
sections of a significant fraction of seed nuclei located in the Bi and Pb
region around the =126 shell closure.Comment: 5 pages, 1 figure Proceedings "Nuclear Physics in Astrophysics
NPA-III", Dresden/Germany (2007
R-process nucleosynthesis calculations with complete nuclear physics input
The r-process constitutes one of the major challenges in nuclear
astrophysics. Its astrophysical site has not yet been identified but there is
observational evidence suggesting that at least two possible sites should
contribute to the solar system abundance of r-process elements and that the
r-process responsible for the production of elements heavier than Z=56 operates
quite robustly producing always the same relative abundances. From the
nuclear-physics point of view the r-process requires the knowledge of a large
number of reaction rates involving exotic nuclei. These include neutron capture
rates, beta-decays and fission rates, the latter for the heavier nuclei
produced in the r-process. We have developed for the first time a complete
database of reaction rates that in addition to neutron-capture rates and
beta-decay half-lives includes all possible reactions that can induce fission
(neutron-capture, beta-decay and spontaneous fission) and the corresponding
fission yields. In addition, we have implemented these reaction rates in a
fully implicit reaction network. We have performed r-process calculations for
the neutrino-driven wind scenario to explore whether or not fission can
contribute to provide a robust r-process pattern
Signals of the QCD phase transition in core-collapse supernovae
We explore the implications of the QCD phase transition during the postbounce
evolution of core-collapse supernovae. Using the MIT bag model for the
description of quark matter and assuming small bag constants, we find that the
phase transition occurs during the early postbounce accretion phase. This stage
of the evolution can be simulated with general relativistic three-flavor
Boltzmann neutrino transport. The phase transition produces a second shock wave
that triggers a delayed supernova explosion. If such a phase transition happens
in a future galactic supernova, its existence and properties should become
observable as a second peak in the neutrino signal that is accompanied by
significant changes in the energy of the emitted neutrinos. In contrast to the
first neutronization burst, this second neutrino burst is dominated by the
emission of anti-neutrinos because the electron-degeneracy is lifted when the
second shock passes through the previously neutronized matter.Comment: 5 pages, 3 figures, 1 table, submitted to PR
(n,γ) cross-sections of light p nuclei: Towards an updated database for the p process
Abstract.: The nucleosynthesis of elements beyond iron is dominated by the s and r processes. However, a small amount of stable isotopes on the proton-rich side cannot be made by neutron capture and is thought to be produced by photodisintegration reactions on existing seed nuclei in the so-called "p process”. So far most of the p-process reactions are not yet accessible by experimental techniques and have to be inferred from statistical Hauser-Feshbach model calculations. The parametrization of these models has to be constrained by measurements on stable proton-rich nuclei. A series of (n,γ) activation measurements on p nuclei, related by detailed balance to the respective photodisintegrations, was carried out at the Karlsruhe Van de Graaff accelerator using the 7Li(p, n) 7Be source for simulating a Maxwellian neutron distribution of kT = 25keV. We present here preliminary results of our extended measuring program in the mass range between A = 74 and A = 132, including first experimental (n,γ) cross-sections of 74Se, 84Sr, 120Te and 132Ba, and an improved value for 130Ba. In all cases we find perfect agreement with the recommended MACS predictions from the Bao et al. compilatio
Nucleosynthesis in thermonuclear supernovae with tracers: convergence and variable mass particles
Nucleosynthetic yield predictions for multi-dimensional simulations of
thermonuclear supernovae generally rely on the tracer particle method to obtain
isotopic information of the ejected material for a given supernova simulation.
We investigate how many tracer particles are required to determine converged
integrated total nucleosynthetic yields. For this purpose, we conduct a
resolution study in the number of tracer particles for different hydrodynamical
explosion models at fixed spatial resolution. We perform hydrodynamic
simulations on a co-expanding Eulerian grid in two dimensions assuming
rotational symmetry for both pure deflagration and delayed detonation Type Ia
supernova explosions. Within a given explosion model, we vary the number of
tracer particles to determine the minimum needed for the method to give a
robust prediction of the integrated yields of the most abundant nuclides. For
the first time, we relax the usual assumption of constant tracer particle mass
and introduce a radially vary- ing distribution of tracer particle masses. We
find that the nucleosynthetic yields of the most abundant species (mass
fraction > 10E-5) are reasonably well predicted for a tracer number as small as
32 per axis and direction - more or less independent of the explosion model. We
conclude that the number of tracer particles that were used in extant published
works appear to have been sufficient as far as integrated yields are concerned
for the most copiously produced nuclides. Additionally we find that a suitably
chosen tracer mass distribution can improve convergence for nuclei produced in
the outer layer of the supernova where the constant tracer mass prescription
suffers from poor spatial resolution.Comment: 9 pages, 5 figures, accepted for publication in MNRA
- …